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Numerical Method Incorporated Limited 
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 A consulting firm in mathematical modeling, esp. 
quantitative trading or wealth management 

 Products: 

 SuanShu 

 AlgoQuant 

 Customers: 

 brokerage houses and funds all over the world 

 multinational corporations 

 very high net worth individuals 

 gambling groups 

 academic institutions 



Overview 

 Quantitative trading is the systematic execution of 
trading orders decided by quantitative market models. 

 It is an arms race to build 

 more reliable and faster execution platforms (computer 
sciences) 

 more comprehensive and accurate prediction models 
(mathematics) 
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Market Making 

 Quote to the market. 

 Ensure that the portfolios respect certain 
risk limits, e.g., delta, position. 

 Money comes mainly from client flow, e.g., 
bid-ask spread. 

 Risk: market moves against your position 
holding. 
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Statistical Arbitrage 

 Bet on the market direction, e.g., whether the price 
will go up or down. 

 Look for repeatable patterns. 

 Money comes from winning trades. 

 Risk: market moves against your position 
holding (guesses). 
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Prerequisite 

 Build or buy a trading infrastructure. 

 many vendors for Gateways, APIs 

 Reuters Tibco 

 Collect data, e.g., timestamps, order book history, 
numbers, events. 

 Reuters, EBS, TAQ, Option Metrics (implied vol),  

 Clean and store the data. 

 flat file, HDF5, Vhayu, KDB, One Tick (from GS) 
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Trading Infrastructure 

 Gateways to the exchanges and ECNs. 

 ION, ECN specific API 

 Aggregated prices 

 Communication network for broadcasting and 
receiving information about, e.g., order book, events 
and order status. 

 API: the interfaces between various components, e.g., 
strategy and database, strategy and broker, strategy 
and exchange, etc. 
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The Ideal 4-Step Research Process 
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 Hypothesis  

 Start with a market insight 

 Modeling 

 Translate the insight in English into mathematics in Greek 

 Model validation 

 Backtesting 

 Analysis 

 Understand why the model is working or not 



The Realistic Research Process 
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 Clean data 

 Align time stamps 

 Read Gigabytes of data 

 Retuers’ EURUSD, tick-by-tick, is 1G/day 

 Extract relevant information 

 PE, BM 

 Handle missing data 

 Incorporate events, news and announcements 

 Code up the quant. strategy 

 Code up the simulation 

 Bid-ask spread 

 Slippage 

 Execution assumptions 

 Wait a very long time for the simulation to 
complete 

 Recalibrate parameters and simulate again 

 Wait a very long time for the simulation to 
complete 

 Recalibrate parameters and simulate again 

 Wait a very long time for the simulation to 
complete 

 Debug 

 Debug again 

 Debug more 

 Debug even more 

 Debug patiently 

 Debug impatiently 

 Debug frustratingly 

 Debug furiously 

 Give up 

 Start to trade 



Research Tools – Very Primitive 
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 Excel 

 Matlab/R/other scripting languages… 

 MetaTrader/Trade Station 

 RTS/other automated trading systems… 



Matlab/R 

 They are very slow. These scripting languages are 
interpreted line-by-line. They are not built for parallel 
computing. 

 They do not handle a lot of data well. How do you 
handle two year worth of EUR/USD tick by tick data in 
Matlab/R? 

 There is no modern software engineering tools built 
for Matlab/R. How do you know your code is correct? 

 The code cannot be debugged easily. Ok. Matlab 
comes with a toy debugger somewhat better than gdb. 
It does not compare to NetBeans, Eclipse or IntelliJ 
IDEA. 



R/scripting languages Advantages 
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 Most people already know it. 

 There are more people who know Java/C#/C++/C than 
Matlab, R, etc., combined. 

 It has a huge collection of math functions for math 
modeling and analysis. 

 Math libraries are also available in SuanShu (Java), Nmath 
(C#), Boost (C++), and Netlib (C). 



R Disadvantages 
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 TOO MANY! 



Some R Disadvantages 
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 Way too slow 
 Must interpret the code line-by-line 

 Limited memory 
 How to read and process gigabytes of tick-by-tick data 

 Limited parallelization 
 Cannot calibrate/simulate a strategy in many scenarios in parallel 

 Inconvenient editing 
 No usage, rename, auto import, auto-completion 

 Primitive debugging tools 
 No conditional breakpoint, disable, thread switch and resume 

 Obsolete C-like language 
 No interface, inheritance; how to define 𝑓 𝑥 ? 



R’s Biggest Disadvantage 
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 You cannot be sure your code is right! 



Productivity 
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Free the Trader! 
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Industrial-Academic Collaboration 
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 Where do the building blocks of ideas come from? 

 Portfolio optimization from Prof. Lai 

 Pairs trading model from Prof. Elliott 

 Optimal trend following from Prof. Dai 

 Moving average crossover from Prof. Satchell 

 Many more…… 



Backtesting 

 Backtesting simulates a strategy (model) using 
historical or fake (controlled) data. 

 It gives an idea of how a strategy would work in the 
past. 

 It does not tell whether it will work in the future. 

 It gives an objective way to measure strategy 
performance. 

 It generates data and statistics that allow further 
analysis, investigation and refinement. 

 e.g., winning and losing trades, returns distribution 

 It helps choose take-profit and stoploss. 
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A Good Backtester (1) 

 allow easy strategy programming 

 allow plug-and-play multiple strategies 

 simulate using historical data 

 simulate using fake, artificial data 

 allow controlled experiments 

 e.g., bid/ask, execution assumptions, news 
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A Good Backtester (2) 

 generate standard and user customized statistics 

 have information other than prices 

 e.g., macro data, news and announcements 

 Auto calibration 

 Sensitivity analysis 

 Quick 
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Iterative Refinement 

 Backtesting generates a large amount of statistics and 
data for model analysis. 

 We may improve the model by 

 regress the winning/losing trades with factors 

 identify, delete/add (in)significant factors 

 check serial correlation among returns 

 check model correlations 

 the list goes on and on…… 
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Some Performance Statistics 

 pnl 

 mean, stdev, corr 

 Sharpe ratio 

 confidence intervals 

 max drawdown 

 breakeven ratio 

 biggest winner/loser 

 breakeven bid/ask 

 slippage 
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Omega 

 Ω 𝐿 =
 1−𝐹 𝑥 𝑑𝑥
𝑏
𝐿

 𝐹 𝑥 𝑑𝑥
𝑏
𝐿

=
𝐶 𝐿

𝑃 𝐿
 

 The higher the ratio; the better. 

 This is the ratio of the probability of having a gain to 
the probability of having a loss. 

 Do not assume normality. 

 Use the whole returns distribution. 
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Bootstrapping 

 We observe only one history. 

 What if the world had evolve different? 

 Simulate “similar” histories to get confidence interval. 

 White's reality check (White, H. 2000). 
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Calibration 

 Most strategies require calibration to update 
parameters for the current trading regime. 

 Occam’s razor: the fewer parameters the better. 

 For strategies that take parameters from the Real line: 
Nelder-Mead, BFGS 

 For strategies that take integers: Mixed-integer non-
linear programming (branch-and-bound, outer-
approximation) 
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Global Optimization Methods 
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Sensitivity 

 How much does the performance change for a small 
change in parameters? 

 Avoid the optimized parameters merely being 
statistical artifacts. 

 A plot of measure vs. d(parameter) is a good visual aid 
to determine robustness. 

 We look for plateaus. 
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Summary 

 Algo trading is a rare field in quantitative finance 
where computer sciences is at least as important as 
mathematics, if not more. 

 Algo trading is a very competitive field in which 
technology is a decisive factor. 
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Scientific Trading Models 

 Scientific trading models are supported by logical 
arguments. 

 can list out assumptions 

 can quantify models from assumptions 

 can deduce properties from models 

 can test properties 

 can do iterative improvements 
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Superstition 

 Many “quantitative” models are just superstitions 
supported by fallacies and wishful-thinking. 
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Let’s Play a Game 



Impostor Quant. Trader 

 Decide that this is a bull market 

 by drawing a line 

 by (spurious) linear regression 

 Conclude that 

 the slope is positive 

 the t-stat is significant 

 Long 

 Take profit at 2 upper sigmas 

 Stop-loss at 2 lower sigmas 



Reality 

 r = rnorm(100) 

 px = cumsum(r) 

 plot(px, type='l') 



Mistakes 

 Data snooping 

 Inappropriate use of mathematics 

 assumptions of linear regression 

 linearity 

 homoscedasticity 

 independence 

 normality 

 Ad-hoc take profit and stop-loss 

 why 2? 

 How do you know when the model is invalidated? 



Extensions of a Wrong Model 

 Some traders elaborate on this idea by 

 using a moving calibration window (e.g., Bands) 

 using various sorts of moving averages (e.g., MA, WMA, 
EWMA) 



Fake Quantitative Models 

 Data snooping 

 Misuse of mathematics 

 Assumptions cannot be quantified 

 No model validation against the current regime 

 Ad-hoc take profit and stop-loss 

 why 2? 

 How do you know when the model is invalidated? 

 Cannot explain winning and losing trades 

 Cannot be analyzed (systematically) 
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A Scientific Approach 

 Start with a market insight (hypothesis) 

 hopefully without peeking at the data 

 Translate English into mathematics 

 write down the idea in math formulae 

 In-sample calibration; out-sample backtesting 

 Understand why the model is working or not 

 in terms of model parameters 

 e.g., unstable parameters, small p-values 
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MANY Mathematical Tools Available 

 Markov model 

 co-integration 

 stationarity 

 hypothesis testing 

 bootstrapping 

 signal processing, e.g., Kalman filter 

 returns distribution after news/shocks 

 time series modeling 

 The list goes on and on…… 
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A Sample Trading Idea 

 When the price trends up, we buy. 

 When the price trends down, we sell. 



What is a Trend? 



An Upward Trend 

 More positive returns than negative ones. 

 Positive returns are persistent. 



Knight-Satchell-Tran 𝑍𝑡 

Zt = 0 
DOWN 
TREND 

Zt = 1 
UP TREND 

q p 

1-q 

1-p 



Knight-Satchell-Tran Process 

 𝑅𝑡 = 𝜇𝑙 + 𝑍𝑡𝜀𝑡 − 1 − 𝑍𝑡 𝛿𝑡 

 𝜇𝑙: long term mean of returns, e.g., 0 

 𝜀𝑡, 𝛿𝑡: positive and negative shocks, non-negative, i.i.d 

 𝑓𝜀 𝑥 =
𝜆1

𝛼1𝑥𝛼1−1

Γ 𝛼1
𝑒−𝜆1𝑥 

 𝑓𝛿 𝑥 =
𝜆2

𝛼2𝑥𝛼2−1

Γ 𝛼2
𝑒−𝜆2𝑥 



What Signal Do We Use? 

 Let’s try Moving Average Crossover. 



Moving Average Crossover 

 Two moving averages: slow (𝑛) and fast (𝑚). 

 Monitor the crossovers. 

 𝐵𝑡 =
1

𝑚
 𝑃𝑡−𝑗
𝑚−1
𝑗=0 −

1

𝑛
 𝑃𝑡−𝑗
𝑛−1
𝑗=0 , 𝑛 > 𝑚 

 Long when 𝐵𝑡 ≥ 0. 

 Short when 𝐵𝑡 < 0. 



How to choose 𝑛 and 𝑚? 

 For most traders, it is an art (guess), not a science. 

 Let’s make our life easier by fixing 𝑚 = 1. 

 Why? 



What is 𝑛? 

 𝑛 = 2 

 𝑛 = ∞ 



Expected P&L 

 GMA(2,1) 

 E 𝑅𝑅𝑇 =
1

1−𝑝
Π𝑝𝜇𝜀 − 1 − 𝑝 𝜇𝛿  

 GMA(∞) 

 E 𝑅𝑅𝑇 = − 1 − 𝑝 1 − Π 𝜇𝜀 + 𝜇𝛿  



Model Benefits (1) 

 It makes “predictions” about which regime we are now 
in. 

 We quantify how useful the model is by 

 the parameter sensitivity 

 the duration we stay in each regime 

 the state differentiation power 
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Model Benefits (2) 

 We can explain winning and losing trades. 

 Is it because of calibration? 

 Is it because of state prediction? 

 We can deduce the model properties. 

 Are 3 states sufficient? 

 prediction variance? 

 We can justify take profit and stoploss based on trader 
utility function. 

54 



Limitations 
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 Assumptions are not realistic. 

 Classical example: Markowitz portfolio optimization 

 http://www.numericalmethod.com:8080/nmj2ee-
war/faces/webdemo/markowitz.xhtml  

 Regime change. 

 IT problems. 

 Bad luck! 

 Variance 
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Markowitz’s Portfolio Selection 
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 For a portfolio of m assets: 

 expected returns of asset i = μ𝑖 

 weight of asset i = 𝑤𝑖 such that  𝑤𝑖 = 1𝑚
𝑖  

 Given a target return of the portfolio μ∗, the optimal 
weighting 𝑤𝑒𝑓𝑓 is given by 

𝑤𝑒𝑓𝑓 = argmin
𝑤

𝑤𝑇Σ𝑤 subject to 𝑤𝑇𝜇 = 𝜇∗, 𝑤
𝑇1 = 1,𝑤 ≥ 0 

 



Stochastic Optimization Approach 

57 

 Consider the more fundamental problem: 
 Given the past returns 𝑟1, … , 𝑟𝑛 

max{𝐸 𝑤𝑇𝑟𝑛+1 − 𝜆𝑉𝑎𝑟 𝑤𝑇𝑟𝑛+1 } 

 λ is regarded as a risk-aversion index (user input) 

 Instead, solve an equivalent stochastic optimization 
problem 

max
𝑛
{𝐸[𝑤𝑇 𝜂 𝑟𝑛+1 − 𝜆𝑉𝑎𝑟 𝑤𝑇 𝜂 𝑟𝑛+1 } 

where 
𝑤 𝜂 = argmin

𝑤
{𝜆𝐸 𝑤𝑇𝑟𝑛+1

2 − 𝜂𝐸(𝑤𝑇𝑟𝑛+1)} 

and 
𝜂 = 1 + 2𝜆𝐸(𝑊𝐵) 

 



Mean-Variance Portfolio Optimization when Means 
and Covariances are Unknown 



Summary 

 Market understanding gives you an intuition to a 
trading strategy. 

 Mathematics is the tool that makes your intuition 
concrete and precise. 

 Programming is the skill that turns ideas and 
equations into reality. 
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AlgoQuant Demo 
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