Outline

- Distance method
- Cointegration
- Stationarity
- Dickey–Fuller tests
References

Pairs Trading

- Definition: trade one asset (or basket) against another asset (or basket)
 - Long one and short the other
- Intuition: For two closely related assets, they tend to “move together” (common trend). We want to buy the cheap one and sell the expensive one.
 - Exploit short term deviation from long term equilibrium.
- Try to make money from “spread”.

Spread

- \(Z = X - \beta Y \)
- \(\beta \)
 - hedge ratio
 - cointegration coefficient
Dollar Neutral Hedge

- Suppose ES (S&P500 E-mini future) is at 1220 and each point worth $50, its dollar value is about $61,000.
- Suppose NQ (Nasdaq 100 E-mini future) is at 1634 and each point worth $20, its dollar value is $32,680.

\[\beta = \frac{61000}{32680} = 1.87. \]

\[Z = ES - 1.87 \times NQ \]

- Buy Z = Buy 10 ES contracts and Sell 19 NQ contracts.
- Sell Z = Sell 10 ES contracts and Buy 19 NQ contracts.
Market Neutral Hedge

- Suppose ES has a beta of 1.25, NQ 1.11.
- We use $\beta = \frac{1.25}{1.11} = 1.13$
Dynamic Hedge

- β changes with time, covariance, market conditions, etc.
- Periodic recalibration.
Distance

- The distance between two time series:
 \[d = \sum (x_i - y_j)^2 \]
- \(x_i, y_j \) are the normalized prices.
- We choose a pair of stocks among a collection with the smallest distance, \(d \).
Distance Trading Strategy

- Sell Z if Z is too expensive.
- Buy Z if Z is too cheap.
- How do we do the evaluation?
Z Transform

- We normalize Z.
- The normalized value is called z-score.
 \[z = \frac{x - \bar{x}}{\sigma_x} \]
- Other forms:
 \[z = \frac{x - M \times \bar{x}}{S \times \sigma_x} \]
 - M, S are proprietary functions for forecasting.
A Very Simple Distance Pairs Trading

- Sell Z when $z > 2$ (standard deviations).
 - Sell 10 ES contracts and Buy 19 NQ contracts.
- Buy Z when $z < -2$ (standard deviations).
 - Buy 10 ES contracts and Sell 19 NQ contracts.
Pros of the Distance Model

- Model free.
- No mis-specification.
- No mis-estimation.
- Distance measure intuitively captures the LOP idea.
Cons of the Distance Model

- Does not guarantee stationarity.
- Cannot predict the convergence time (expected holding period).
- Ignores the dynamic nature of the spread process, essentially treat the spread as i.i.d.
- Using more strict criterions works for equity. In fixed income trading, we don’t have the luxury of throwing away many pairs.
Risks in Pairs Trading

- Long term equilibrium does not hold.
- Systematic market risk.
- Firm specific risk.
- Liquidity.
Stationarity

- These ad-hoc β calibration does not guarantee the single most important statistical property in trading: stationarity.
- Strong stationarity: the joint probability distribution of $\{x_t\}$ does not change over time.
- Weak stationarity: the first and second moments do not change over time.
 - Covariance stationarity
Cointegration

- Cointegration: select a linear combination of assets to construct an (approximately) stationary portfolio.
- A stationary stochastic process is mean-reverting.
- Long when the spread/portfolio/basket falls sufficiently below a long term equilibrium.
- Short when the spread/portfolio/basket rises sufficiently above a long term equilibrium.
Objective

- Given two I(1) price series, we want to find a linear combination such that:
 \[z_t = x_t - \beta y_t = \mu + \epsilon_t \]
 \[\epsilon_t \text{ is } I(0), \text{ a stationary residue.} \]
 \[\mu \text{ is the long term equilibrium.} \]
 \[\text{Long when } z_t < \mu - \Delta. \]
 \[\text{Sell when } z_t > \mu + \Delta. \]
Stocks from the Same Industry

- Reduce market risk, esp., in bear market.
 - Stocks from the same industry are likely to be subject to the same systematic risk.
- Give some theoretical unpinning to the pairs trading.
 - Stocks from the same industry are likely to be driven by the same fundamental factors (common trends).
Cointegration Definition

- \(X_t \sim \text{CI}(d, b) \) if
 - All components of \(X_t \) are integrated of same order \(d \).
 - There exists a \(\beta_t \) such that the linear combination, \(\beta_t X_t = \beta_1 X_{1t} + \beta_2 X_{2t} + \cdots + \beta_n X_{nt} \), is integrated of order \((d - b) \), \(b > 0 \).
 - \(\beta \) is the cointegrating vector, not unique.
Illustration for Trading

- Suppose we have two assets, both reasonably I(1), we want to find β such that
 - $Z = X + \beta Y$ is I(0), i.e., stationary.
- In this case, we have $d = 1, b = 1$.
A Simple VAR Example

- \(y_t = a_{11}y_{t-1} + a_{12}z_{t-1} + \varepsilon_{yt} \)
- \(z_t = a_{21}y_{t-1} + a_{22}z_{t-1} + \varepsilon_{zt} \)
- Theorem 4.2, Johansen, places certain restrictions on the coefficients for the VAR to be cointegrated.
 - The roots of the characteristics equation lie on or outside the unit disc.
Coefficient Restrictions

- \(a_{11} = \frac{(1-a_{22})-a_{12}a_{21}}{1-a_{22}} \)
- \(a_{22} > -1 \)
- \(a_{12}a_{21} + a_{22} < 1 \)
VECM (1)

- Taking differences
 - $y_t - y_{t-1} = (a_{11} - 1)y_{t-1} + a_{12}z_{t-1} + \varepsilon_{yt}$
 - $z_t - z_{t-1} = a_{21}y_{t-1} + (a_{22} - 1)z_{t-1} + \varepsilon_{zt}$

\[
\begin{bmatrix}
\Delta y_t \\
\Delta z_t
\end{bmatrix}
= \begin{bmatrix}
a_{11} - 1 & a_{12} \\
a_{21} & a_{22} - 1
\end{bmatrix}
\begin{bmatrix}
y_{t-1} \\
z_{t-1}
\end{bmatrix} + \begin{bmatrix}
\varepsilon_{yt} \\
\varepsilon_{zt}
\end{bmatrix}
\]

- Substitution of a_{11}

\[
\begin{bmatrix}
\Delta y_t \\
\Delta z_t
\end{bmatrix}
= \begin{bmatrix}
\frac{-a_{12}a_{21}}{1-a_{22}} & a_{12} \\
a_{21} & a_{22} - 1
\end{bmatrix}
\begin{bmatrix}
y_{t-1} \\
z_{t-1}
\end{bmatrix} + \begin{bmatrix}
\varepsilon_{yt} \\
\varepsilon_{zt}
\end{bmatrix}
\]
VECM (2)

\[\Delta y_t = \alpha_y (y_{t-1} - \beta z_{t-1}) + \epsilon_{yt} \]
\[\Delta z_t = \alpha_z (y_{t-1} - \beta z_{t-1}) + \epsilon_{zt} \]
\[\alpha_y = \frac{-a_{12}a_{21}}{1-a_{22}} \]
\[\alpha_z = a_{21} \]
\[\beta = \frac{1-a_{22}}{a_{21}}, \text{the cointegrating coefficient} \]
\[y_{t-1} - \beta z_{t-1} \text{ is the long run equilibrium, } I(0). \]
\[\alpha_y, \alpha_z \text{ are the speed of adjustment parameters.} \]
Interpretation

- Suppose the long run equilibrium is 0,
 - $\Delta y_t, \Delta z_t$ responds only to shocks.
- Suppose $\alpha_y < 0$, $\alpha_z > 0$,
 - $\{y_t\}$ decreases in response to a +ve deviation.
 - $\{z_t\}$ increases in response to a +ve deviation.
Granger Representation Theorem

- If X_t is cointegrated, an VECM form exists.
- The increments can be expressed as a functions of the dis-equilibrium, and the lagged increments.
- $\Delta X_t = \alpha \beta' X_{t-1} + \sum c_t \Delta X_{t-1} + \epsilon_t$
- In our simple example, we have

 $\begin{bmatrix} \Delta y_t \\ \Delta z_t \end{bmatrix} = \begin{bmatrix} \alpha_y \\ \alpha_z \end{bmatrix} \begin{bmatrix} 1 & -\beta \end{bmatrix} \begin{bmatrix} y_{t-1} \\ z_{t-1} \end{bmatrix} + \begin{bmatrix} \epsilon_{yt} \\ \epsilon_{zt} \end{bmatrix}$
Granger Causality

- \(\{z_t\} \) does not Granger Cause \(\{y_t\} \) if lagged values of \(\{\Delta z_{t-i}\} \) do not enter the \(\Delta y_t \) equation.
- \(\{y_t\} \) does not Granger Cause \(\{z_t\} \) if lagged values of \(\{\Delta y_{t-i}\} \) do not enter the \(\Delta z_t \) equation.
Test for Stationarity

- An augmented Dickey–Fuller test (ADF) is a test for a unit root in a time series sample.
- It is an augmented version of the Dickey–Fuller test for a larger and more complicated set of time series models.
- Intuition:
 - If the series y_t is stationary, then it has a tendency to return to a constant mean. Therefore large values will tend to be followed by smaller values, and small values by larger values. Accordingly, the level of the series will be a significant predictor of next period's change, and will have a negative coefficient.
 - If, on the other hand, the series is integrated, then positive changes and negative changes will occur with probabilities that do not depend on the current level of the series.
 - In a random walk, where you are now does not affect which way you will go next.
ADF Math

- $\Delta y_t = \alpha + \beta t + \gamma y_{t-1} + \sum_{i=1}^{p-1} \Delta y_{t-i} + \epsilon_t$
- Null hypothesis $H_0: \gamma = 0$. (y_t non-stationary)
- $\alpha = 0, \beta = 0$ models a random walk.
- $\beta = 0$ models a random walk with drift.
- Test statistics $= \frac{\hat{\gamma}}{\sigma(\hat{\gamma})}$, the more negative, the more reason to reject H_0 (hence y_t stationary).
- SuanShu: AugmentedDickeyFuller.java
Engle-Granger Two Step Approach

- Estimate either
 - \(y_t = \beta_{10} + \beta_{11} z_t + e_{1t} \)
 - \(z_t = \beta_{20} + \beta_{21} y_t + e_{2t} \)
- As the sample size increases indefinitely, asymptotically a test for a unit root in \(\{e_{1t}\} \) and \(\{e_{2t}\} \) are equivalent, but not for small sample sizes.
- Test for unit root using ADF on either \(\{e_{1t}\} \) and \(\{e_{2t}\} \).
- If \(\{y_t\} \) and \(\{z_t\} \) are cointegrated, \(\{\beta\} \) super converges.
Engle-Granger Pros and Cons

- Pros:
 - simple

- Cons:
 - This approach is subject to twice the estimation errors. Any errors introduced in the first step carry over to the second step.
 - Work only for two I(1) time series.
Testing for Cointegration

- Note that in the VECM, the rows in the coefficient, Π, are NOT linearly independent.

\[
\begin{bmatrix}
\Delta y_t \\
\Delta z_t
\end{bmatrix} = \begin{bmatrix}
\frac{-a_{12}a_{21}}{1-a_{22}} & a_{12} \\
a_{21} & a_{22} - 1
\end{bmatrix} \begin{bmatrix} y_{t-1} \\ z_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{yt} \\ \varepsilon_{zt} \end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{-a_{12}a_{21}}{1-a_{22}} & a_{12}
\end{bmatrix} \times \frac{-(1-a_{22})}{a_{12}} = [a_{21} a_{22} - 1]
\]

- The rank of Π determine whether the two assets $\{y_t\}$ and $\{z_t\}$ are cointegrated.
VAR & VECM

- In general, we can write convert a VAR to an VECM.
- VAR (from numerical estimation by, e.g., OLS):
 \[X_t = \sum_{i=1}^{p} A_i X_{t-i} + \varepsilon_t \]
- Transitory form of VECM (reduced form)
 \[\Delta X_t = \Pi X_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta X_{t-i} + \varepsilon_t \]
- Long run form of VECM
 \[\Delta X_t = \sum_{i=1}^{p-1} \Upsilon_i \Delta X_{t-i} + \Pi X_{t-p} + \varepsilon_t \]
The Π Matrix

- $\text{Rank}(\Pi) = n$, full rank
 - The system is already stationary; a standard VAR model in levels.
- $\text{Rank}(\Pi) = 0$
 - There exists NO cointegrating relations among the time series.
- $0 < \text{Rank}(\Pi) < n$
 - $\Pi = \alpha\beta'$
 - β is the cointegrating vector
 - α is the speed of adjustment.
Rank Determination

- Determining the rank of Π is amount to determining the number of non-zero eigenvalues of Π.
 - Π is usually obtained from (numerical VAR) estimation.
 - Eigenvalues are computed using a numerical procedure.
Trace Statistics

- Suppose the eigenvalues of Π are: $\lambda_1 > \lambda_2 > \cdots > \lambda_n$.
- For the 0 eigenvalues, $\ln(1 - \lambda_i) = 0$.
- For the (big) non-zero eigenvalues, $\ln(1 - \lambda_i)$ is (very negative).

The likelihood ratio test statistics

\[
Q(H(r)|H(n)) = -T \sum_{i=r+1}^{p} \log(1 - \lambda_i)
\]

Ho: rank $\leq r$; there are at most r cointegrating β.
Test Procedure

- **int r = 0;**//rank
- **for (; r <= n; ++r) {**
 - compute $Q = Q(H(r)|H(n))$;
 - If (Q > c.v.) {//compare against a critical value
 - break;//fail to reject the null hypothesis; rank found
 }
- **}**
- **}**
- **r is the rank found**
Decomposing Π

- Suppose the rank of $\Pi = r$.
- $\Pi = \alpha \beta'$.
- Π is $n \times n$.
- α is $n \times r$.
- β' is $r \times n$.
Estimating β

- β can estimated by maximizing the log-likelihood function in Chapter 6, Johansen.
- $\log L(\Psi, \alpha, \beta, \Omega)$

Theorem 6.1, Johansen: β is found by solving the following eigenvalue problem:

$$|\lambda S_{11} - S_{10} S_{00}^{-1} S_{01}| = 0$$
Each non-zero eigenvalue λ corresponds to a cointegrating vector, which is its eigenvector.

$\beta = (v_1, v_2, \ldots, v_r)$

β spans the cointegrating space.

For two cointegrating assets, there are only one β (v_1) so it is unequivocal.

When there are multiple β, we need to add economic restrictions to identify β.
Trading the Pairs

- Given a space of (liquid) assets, we compute the pairwise cointegrating relationships.
- For each pair, we validate stationarity by performing the ADF test.
- For the strongly mean-reverting pairs, we can design trading strategies around them.