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 Stationarity 
 Dickey–Fuller tests 
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Pairs Trading 
 Definition: trade one asset (or basket) against another 

asset (or basket) 
 Long one and short the other 

 Intuition: For two closely related assets, they tend to 
“move together” (common trend). We want to buy the 
cheap one and sell the expensive one. 
 Exploit short term deviation from long term equilibrium. 

 Try to make money from “spread”. 
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Spread 
 𝑍 = 𝑋 − 𝛽𝑌 
 𝛽 
 hedge ratio 
 cointegration coefficient 
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Dollar Neutral Hedge 
 Suppose ES (S&P500 E-mini future) is at 1220 and each 

point worth $50, its dollar value is about $61,000. 
Suppose NQ (Nasdaq 100 E-mini future) is at 1634 and 
each point worth $20, its dollar value is $32,680. 

 𝛽 = 61000
32680

= 1.87. 

 𝑍 = 𝐸𝐸 − 1.87 × 𝑁𝑁 
 Buy Z = Buy 10 ES contracts and Sell 19 NQ contracts. 
 Sell Z = Sell 10 ES contracts and Buy 19 NQ contracts. 
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Market Neutral Hedge 
 Suppose ES has a beta of 1.25, NQ 1.11. 

 We use 𝛽 = 1.25
1.11

= 1.13 
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Dynamic Hedge 
 𝛽 changes with time, covariance, market conditions, 

etc. 
 Periodic recalibration. 
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Distance 
 The distance between two time series: 
 𝑑 = ∑ 𝑥𝑖 − 𝑦𝑗

2
 

 𝑥𝑖, 𝑦𝑗 are the normalized prices. 
 We choose a pair of stocks among a collection with the 

smallest distance, 𝑑. 
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Distance Trading Strategy 
 Sell Z if Z is too expensive. 
 Buy Z if Z is too cheap. 
 How do we do the evaluation? 
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Z Transform 
 We normalize Z. 
 The normalized value is called z-score. 

 𝑧 = 𝑥−𝑥̅
𝜎𝑥

 

 Other forms: 

 𝑧 = 𝑥−𝑀×𝑥̅
𝑆×𝜎𝑥

 

 M, S are proprietary functions for forecasting. 
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A Very Simple Distance Pairs Trading 
 Sell Z when z > 2 (standard deviations). 
 Sell 10 ES contracts and Buy 19 NQ contracts. 

 Buy Z when z < -2 (standard deviations). 
 Buy 10 ES contracts and Sell 19 NQ contracts. 
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Pros of the Distance Model 
 Model free. 
 No mis-specification. 
 No mis-estimation. 
 Distance measure intuitively captures the LOP idea. 

13 



Cons of the Distance Model 
 Does not guarantee stationarity. 
 Cannot predict the convergence time (expected 

holding period). 
 Ignores the dynamic nature of the spread process, 

essentially treat the spread as i.i.d. 
 Using more strict criterions works for equity. In fixed 

income trading, we don’t have the luxury of throwing 
away many pairs. 
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Risks in Pairs Trading 
 Long term equilibrium does not hold. 
 Systematic market risk. 
 Firm specific risk. 
 Liquidity. 
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Stationarity 
 These ad-hoc 𝛽calibration does not guarantee the 

single most important statistical property in trading: 
stationarity. 

 Strong stationarity: the joint probability distribution 
of 𝑥𝑡  does not change over time. 

 Weak stationarity: the first and second moments do 
not change over time. 
 Covariance stationarity 
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Cointegration 
 Cointegration: select a linear combination of assets to 

construct an (approximately) stationary portfolio. 
 A stationary stochastic process is mean-reverting. 
 Long when the spread/portfolio/basket falls 

sufficiently below a long term equilibrium. 
 Short when the spread/portfolio/basket rises 

sufficiently above a long term equilibrium. 
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Objective 
 Given two I(1) price series, we want to find a linear 

combination such that: 
 𝑧𝑡 = 𝑥𝑡 − 𝛽𝑦𝑡 = 𝜇 + 𝜀𝑡 

 𝜀𝑡 is I(0), a stationary residue. 
 𝜇 is the long term equilibrium. 
 Long when 𝑧𝑡 < 𝜇 − Δ. 
 Sell when 𝑧𝑡 > 𝜇 + Δ. 
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Stocks from the Same Industry 
 Reduce market risk, esp., in bear market. 
 Stocks from the same industry are likely to be subject to the 

same systematic risk. 
 Give some theoretical unpinning to the pairs trading. 
 Stocks from the same industry are likely to be driven by the 

same fundamental factors (common trends). 

19 



Cointegration Definition 
 𝑋𝑡~CI 𝑑, 𝑏  if 
 All components of 𝑋𝑡 are integrated of same order 𝑑. 
 There exists a 𝛽𝑡 such that the linear combination,𝛽𝑡𝑋𝑡 =
𝛽1𝑋1𝑡 + 𝛽2𝑋2𝑡 + ⋯+ 𝛽𝑛𝑋𝑛𝑡, is integrated of order 
𝑑 − 𝑏 ,𝑏 > 0. 

 𝛽is the cointegrating vector, not unique. 
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Illustration for Trading 
 Suppose we have two assets, both reasonably I(1), we 

want to find 𝛽 such that 
 𝑍 = 𝑋 + 𝛽𝑌 is I(0), i.e., stationary. 

 In this case, we have 𝑑 = 1, 𝑏 = 1. 
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A Simple VAR Example 
 𝑦𝑡 = 𝑎11𝑦𝑡−1 + 𝑎12𝑧𝑡−1 + 𝜀𝑦𝑦 
 𝑧𝑡 = 𝑎21𝑦𝑡−1 + 𝑎22𝑧𝑡−1 + 𝜀𝑧𝑡 
 Theorem 4.2, Johansen, places certain restrictions on 

the coefficients for the VAR to be cointegrated. 
 The roots of the characteristics equation lie on or outside 

the unit disc. 
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Coefficient Restrictions 

 𝑎11 = 1−𝑎22 −𝑎12𝑎21
1−𝑎22

 

 𝑎22 > −1 
 𝑎12𝑎21 + 𝑎22 < 1 
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VECM (1) 
 Taking differences 
 𝑦𝑡 − 𝑦𝑡−1 = 𝑎11 − 1 𝑦𝑡−1 + 𝑎12𝑧𝑡−1 + 𝜀𝑦𝑦 
 𝑧𝑡 − 𝑧𝑡−1 = 𝑎21𝑦𝑡−1 + 𝑎22 − 1 𝑧𝑡−1 + 𝜀𝑧𝑡 


Δ𝑦𝑡
Δ𝑧𝑡

= 𝑎11 − 1 𝑎12
𝑎21 𝑎22 − 1

𝑦𝑡−1
𝑧𝑡−1 +

𝜀𝑦𝑦
𝜀𝑧𝑡  

 Substitution of 𝑎11 


Δ𝑦𝑡
Δ𝑧𝑡

=
−𝑎12𝑎21
1−𝑎22

𝑎12
𝑎21 𝑎22 − 1

𝑦𝑡−1
𝑧𝑡−1 +

𝜀𝑦𝑦
𝜀𝑧𝑡  
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VECM (2) 
 Δ𝑦𝑡 = 𝛼𝑦 𝑦𝑡−1 − 𝛽𝑧𝑡−1 + 𝜖𝑦𝑦 
 Δ𝑧𝑡 = 𝛼𝑧 𝑦𝑡−1 − 𝛽𝑧𝑡−1 + 𝜖𝑧𝑡 
 𝛼𝑦 = −𝑎12𝑎21

1−𝑎22
 

 𝛼𝑧 = 𝑎21 

 𝛽 = 1−𝑎22
𝑎21

, the cointegrating coefficient 

 𝑦𝑡−1 − 𝛽𝑧𝑡−1 is the long run equilibrium, I(0). 
 𝛼𝑦, 𝛼𝑧 are the speed of adjustment parameters. 

25 



Interpretation 
 Suppose the long run equilibrium is 0, 
 Δ𝑦𝑡, Δ𝑧𝑡 responds only to shocks. 

 Suppose 𝛼𝑦 < 0, 𝛼𝑧 > 0, 
 𝑦𝑡  decreases in response to a +ve deviation. 
 𝑧𝑡  increases in response to a +ve deviation. 
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Granger Representation Theorem 
 If 𝑋𝑡is cointegrated, an VECM form exists. 
 The increments can be expressed as a functions of the 

dis-equilibrium, and the lagged increments. 
 Δ𝑋𝑡 = 𝛼𝛽′𝑋𝑡−1 + ∑𝑐𝑡Δ𝑋𝑡−1 + 𝜀𝑡 
 In our simple example, we have 


Δ𝑦𝑡
Δ𝑧𝑡

=
𝛼𝑦
𝛼𝑧

1 −𝛽
𝑦𝑡−1
𝑧𝑡−1 +

𝜀𝑦𝑦
𝜀𝑧𝑡  
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Granger Causality 
 𝑧𝑡  does not Granger Cause 𝑦𝑡 if lagged values of 
Δ𝑧𝑡−𝑖  do not enter the Δ𝑦𝑡 equation. 

 𝑦𝑡  does not Granger Cause 𝑧𝑡 if lagged values of 
Δ𝑦𝑡−𝑖  do not enter the Δ𝑧𝑡 equation. 
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Test for Stationarity 
 An augmented Dickey–Fuller test (ADF) is a test for a unit 

root in a time series sample. 
 It is an augmented version of the Dickey–Fuller test for a 

larger and more complicated set of time series models. 
 Intuition: 
 if the series 𝑦𝑡 is stationary, then it has a tendency to return to a 

constant mean. Therefore large values will tend to be followed by 
smaller values, and small values by larger values. Accordingly, the 
level of the series will be a significant predictor of next period's 
change, and will have a negative coefficient. 

 If, on the other hand, the series is integrated, then positive 
changes and negative changes will occur with probabilities that 
do not depend on the current level of the series. 

 In a random walk, where you are now does not affect which way 
you will go next. 
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ADF Math 
 Δ𝑦𝑡 = 𝛼 + 𝛽𝛽 + 𝛾𝑦𝑡−1 + ∑ Δ𝑦𝑡−𝑖

𝑝−1
𝑖=1 + 𝜖𝑡 

 Null hypothesis 𝐻0: 𝛾 = 0. (𝑦𝑡 non-stationary) 
 𝛼 = 0,𝛽 = 0 models a random walk. 
 𝛽 = 0 models a random walk with drift. 

 Test statistics = 𝛾�
𝜎 𝛾�

, the more negative, the more 
reason to reject 𝐻0 (hence 𝑦𝑡 stationary). 

 SuanShu: AugmentedDickeyFuller.java 
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Engle-Granger Two Step Approach 
 Estimate either 
 𝑦𝑡 = 𝛽10 + 𝛽11𝑧𝑡 + 𝑒1𝑡 
 𝑧𝑡 = 𝛽20 + 𝛽21𝑦𝑡 + 𝑒2𝑡 
 As the sample size increase indefinitely, asymptotically a 

test for a unit root in 𝑒1𝑡  and 𝑒2𝑡  are equivalent, but not 
for small sample sizes. 

 Test for unit root using ADF on either 𝑒1𝑡  and 𝑒2𝑡 . 
 If 𝑦𝑡  and 𝑧𝑡  are cointegrated, 𝛽  super converges. 
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Engle-Granger Pros and Cons 
 Pros: 
 simple 

 Cons: 
 This approach is subject to twice the estimation errors. Any 

errors introduced in the first step carry over to the second 
step. 

 Work only for two I(1) time series. 
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Testing for Cointegration 
 Note that in the VECM, the rows in the coefficient, Π, 

are NOT linearly independent. 


Δ𝑦𝑡
Δ𝑧𝑡

=
−𝑎12𝑎21
1−𝑎22

𝑎12
𝑎21 𝑎22 − 1

𝑦𝑡−1
𝑧𝑡−1 +

𝜀𝑦𝑦
𝜀𝑧𝑡  


−𝑎12𝑎21
1−𝑎22

𝑎12 × − 1−𝑎22
𝑎12

= 𝑎21 𝑎22 − 1  

 The rank of Π determine whether the two assets 
𝑦𝑡  and 𝑧𝑡  are cointegrated. 
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VAR & VECM 
 In general, we can write convert a VAR to an VECM. 
 VAR (from numerical estimation by, e.g., OLS): 
 𝑋𝑡 = ∑ 𝐴𝑖𝑋𝑡−𝑖 + 𝜀𝑡

𝑝
𝑖=1  

 Transitory form of VECM (reduced form) 
 Δ𝑋𝑡 = Π𝑋𝑡−1 + ∑ Γ𝑖Δ𝑋𝑡−𝑖 + 𝜀𝑡

𝑝−1
𝑖=1  

 Long run form of VECM 
 Δ𝑋𝑡 = ∑ Υ𝑖Δ𝑋𝑡−𝑖

𝑝−1
𝑖=1 + Π𝑋𝑡−𝑝 + 𝜀𝑡 
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The Π Matrix 
 Rank(Π) = n, full rank 
 The system is already stationary; a standard VAR model in 

levels. 
 Rank(Π) = 0 
 There exists NO cointegrating relations among the time 

series. 
 0 < Rank(Π) < n 
 Π = 𝛼𝛽′ 
 𝛽 is the cointegrating vector 
 𝛼 is the speed of adjustment. 
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Rank Determination 
 Determining the rank of Π is amount to determining 

the number of non-zero eigenvalues of Π. 
 Π is usually obtained from (numerical VAR) estimation. 
 Eigenvalues are computed using a numerical procedure. 

36 



Trace Statistics 
 Suppose the eigenvalues of Π are:𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛. 
 For the 0 eigenvalues, ln 1 − 𝜆𝑖 = 0. 
 For the (big) non-zero eigenvalues, ln 1 − 𝜆𝑖  is (very 

negative). 
 The likelihood ratio test statistics 
 𝑄 𝐻 𝑟 |𝐻 𝑛 = −𝑇∑ log 1 − 𝜆𝑖

𝑝
𝑖=𝑟+1  

 H0: rank ≤ r; there are at most r cointegrating β. 
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Test Procedure 
 int r = 0;//rank 
 for (; r <= n; ++r) { 
 compute Q = 𝑄 𝐻 𝑟 |𝐻 𝑛 ; 
 If (Q > c.v.) {//compare against a critical value 

 break;//fail to reject the null hypothesis; rank found 
 } 

 } 
 r is the rank found 
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Decomposing Π 
 Suppose the rank of Π = 𝑟. 
 Π = 𝛼𝛽′. 
 Π is 𝑛 × 𝑛. 
 𝛼 is 𝑛 × 𝑟. 
 𝛽′is r × 𝑛. 
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Estimating 𝛽  
 𝛽 can estimated by maximizing the log-likelihood 

function in Chapter 6, Johansen. 
 logL Ψ,𝛼,𝛽,Ω  

 Theorem 6.1, Johansen: 𝛽 is found by solving the 
following eigenvalue problem: 
 𝜆𝑆11 − 𝑆10𝑆00−1𝑆01 = 0 
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𝛽 
 Each non-zero eigenvalue λ corresponds to a 

cointegrating vector, which is its eigenvector. 
 𝛽 = 𝑣1, 𝑣2,⋯ , 𝑣𝑟  
 𝛽 spans the cointegrating space. 
 For two cointegrating asset, there are only one 𝛽 (𝑣1) 

so it is unequivocal. 
 When there are multiple 𝛽, we need to add economic 

restrictions to identify 𝛽. 
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Trading the Pairs 
 Given a space of (liquid) assets, we compute the 

pairwise cointegrating relationships. 
 For each pair, we validate stationarity by performing 

the ADF test. 
 For the strongly mean-reverting pairs, we can design 

trading strategies around them. 
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