

Introduction to Algorithmic Trading Strategies Lecture 8

Risk Management

Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com

Outline

- Value at Risk (VaR)
- Extreme Value Theory (EVT)

References

- AJ McNeil. Extreme Value Theory for Risk Managers. 1999.
- Blake LeBaron, Ritirupa Samanta. Extreme Value Theory and Fat Tails in Equity Markets. November 2005.

Risks

- ▶ Financial theories say:
 - the most important single source of profit is risk.
 - ▶ profit ∝ risk.
- ▶ *I personally do not agree.*

What Are Some Risks? (1)

Bonds:

- duration (sensitivity to interest rate)
- convexity
- term structure models

Credit:

- rating
- default models

What Are Some Risks? (2)

- Stocks
 - volatility
 - correlations
 - beta
- Derivatives
 - delta
 - gamma
 - vega

What Are Some Risks? (3)

- ▶ FX
 - volatility
 - target zones
 - spreads
 - term structure models of related currencies

Other Risks?

- ▶ Too many to enumerate...
 - natural disasters, e.g., earthquake
 - war
 - politics
 - operational risk
 - regulatory risk
 - wide spread rumors
 - alien attack!!!
- Practically infinitely many of them...

VaR Definition

- ▶ Given a loss distribution, F, quintile $1 > q \ge 0.95$,
- $VaR_q = F^{-1}(q)$

Expected Shortfall

- Suppose we hit a big loss, what is its expected size?
- $ES_q = E[X|X > VaR_q]$

VaR in Layman Term

- ▶ VaR is the maximum loss which can occur with certain confidence over a holding period (of *n* days).
- ▶ Suppose a daily VaR is stated as \$1,000,000 to a 95% level of confidence.
- There is only a 5% chance that the loss the next day will *exceed* \$1,000,000.

Why VaR?

- ▶ Is it a true way to measure risk?
 - NO!
- ▶ Is it a universal measure accounting for most risks?
 - NO!
- ▶ Is it a good measure?
 - NO!
- Only because the industry and regulators have adopted it.
 - It is a widely accepted standard.

VaR Computations

- Historical Simulation
- Variance-CoVariance
- Monte Carlo simulation

Historical Simulations

- ▶ Take a historical *returns* time series as the returns distribution.
- Compute the loss distribution from the historical returns distribution.

Historical Simulations Advantages

- Simplest
- Non-parametric, no assumption of distributions, no possibility of estimation error

Historical Simulations Dis-Advantages

- As all historical returns carry equal weights, it runs the risk of over-/under- estimate the recent trends.
- Sample period may not be representative of the risks.
- History may not repeat itself.
- Cannot accommodate for new risks.
- Cannot incorporate subjective information.

Variance-CoVariance

- Assume all returns distributions are Normal.
- Estimate asset variances and covariances from historical data.
- Compute portfolio variance.

Variance-CoVariance Example

- ▶ 95% confidence level (1.645 stdev from mean)
- ▶ Nominal = \$10 million
- Price = \$100
- Average return = 7.35%
- ▶ Standard deviation = 1.99%
- The VaR at 95% confidence level = 1.645 x 0.0199 = 0.032736
- The VaR of the portfolio = 0.032736 x 10 million = \$327,360.

Variance-CoVariance Advantages

- Widely accepted approach in banks and regulations.
- ▶ Simple to apply; straightforward to explain.
- Datasets immediately available
 - very easy to estimate from historical data
 - free data from RiskMetrics
 - http://www.jpmorgan.com
- ▶ Can do scenario tests by twisting the parameters.
 - sensitivity analysis of parameters
 - give more weightings to more recent data

Variance-CoVariance Disadvantages

- Assumption of Normal distribution for returns, which is known to be not true.
- Does not take into account of fat tails.
- Does not work with non-linear assets in portfolio, e.g., options.

Monte Carlo Simulation

- You create your own returns distributions.
 - historical data
 - implied data
 - economic scenarios
- Simulate the joint distributions many times.
- Compute the empirical returns distribution of the portfolio.
- Compute the (e.g., 1%, 5%) quantile.

Monte Carlo Simulation Advantages

- Does not assume any specific models, or forms of distributions.
- Can incorporate any information, even subjective views.
- Can do scenario tests by twisting the parameters.
 - sensitivity analysis of parameters
 - give more weightings to more recent data
- Can work with non-linear assets, e.g., options.
- Can track path-dependence.

Monte Carlo Simulation Disadvantages

- Slow.
 - To increase the precision by a factor of 10, we must make 100 times more simulations.
 - Various variance reduction techniques apply.
 - antithetic variates
 - control variates
 - importance sampling
 - stratified sampling
- Difficult to build a (high) multi-dimensional joint distribution from data.

100-Year Market Crash

- ▶ How do we incorporate rare events into our returns distributions, hence enhanced risk management?
- Statistics works very well when you have a large amount of data.
- ▶ How do we analyze for (very) small samples?

Fat Tails

QQ

- A QQ plots display the quintiles of the sample data against those of a standard normal distribution.
- ▶ This is the first diagnostic tool in determining whether the data have fat tails.

QQ Plot

Asymptotic Properties

- ▶ The (normalized) mean of a the sample mean of a large population is normally distributed, *regardless* of the generating distribution.
- What about the sample maximum?

Intuition

- ▶ Let X_1 , ..., X_n be i.i.d. with distribution F(x).
- Let the sample maxima be $M_n = X_{(n)} = \max_i X_i$.
- $P(M_n \le x) = P(X_1 \le x, ..., X_n \le x)$
- $= \prod_{i=1}^n P(X_i \le x) = F^n(x)$
- What is $\lim_{n\to\infty} F^n(x)$?

Convergence

- ▶ Suppose we can scale the maximums $\{c_n\}$ and change the locations (means) $\{d_n\}$.
- There may exist non-negative sequences of these such that
 - $c_n^{-1}(M_n d_n) \rightarrow Y$, Y is not a point
 - $H(x) = \lim_{n \to \infty} P(c_n^{-1}(M_n d_n) \le x)$
 - $= \lim_{n \to \infty} P(M_n \le c_n x + d_n)$
 - $= \lim_{n \to \infty} F^n(c_n x + d_n)$

Example 1 (Gumbel)

- $F(x) = 1 e^{-\lambda x}, x > 0.$
- Let $c_n = \lambda^{-1}$, $d_n = \lambda^{-1} \log n$.
- $P(\lambda(M_n \lambda^{-1} \log n) \le x)$
- $= P(M_n \le \lambda^{-1}(x + \log n))$
- $= \left(1 e^{-(x + \log n)}\right)^n$
- $\blacktriangleright = \left(1 \frac{e^{-x}}{n}\right)^n$
- $\rightarrow e^{-e^{-x}} = e^{-e^{-x}} 1_{\{x>0\}}$

Example 2 (Fre 'chet)

$$F(x) = 1 - \frac{\theta^{\alpha}}{(\theta + x)^{\alpha}} = 1 - \frac{1}{\left(1 + \frac{x}{\theta}\right)^{\alpha}}, x > 0.$$

- $P(\vartheta^{-1}n^{-1/\alpha}M_n \le x)$
- $= P(M_n \le \vartheta n^{1/\alpha} x)$

$$= \left(1 - \frac{1}{\left(1 + n^{1/a}x\right)^{\alpha}}\right)^n \sim \left(1 - \frac{1}{\left(n^{1/a}x\right)^{\alpha}}\right)^n$$

$$\blacktriangleright = \left(1 - \frac{x^{-\alpha}}{n}\right)^n$$

$$\rightarrow e^{-x^{-\alpha}} 1_{\{x>0\}}$$

Fisher-Tippett Theorem

- ▶ It turns out that *H* can take only one of the three possible forms.
- Fre 'chet

$$\Phi_{\alpha}(x) = e^{-x^{-\alpha}} 1_{\{x > 0\}}$$

Gumbel

Weibull

$$\Psi_{\alpha}(x) = e^{-(-x)^{\alpha}} 1_{\{x < 0\}}$$

Maximum Domain of Attraction

Fre 'chet

- Fat tails
- E.g., Pareto, Cauchy, student t,

Gumbel

- ▶ The tail decay exponentially with all finite moments.
- E.g., normal, log normal, gamma, exponential

Weibull

- Thin tailed distributions with finite upper endpoints, hence bounded maximums.
- E.g., uniform distribution

Why Fre 'chet?

- Since we care about fat tailed distributions for financial asset returns, we rule out Gumbel.
- Since financial asset returns are theoretically unbounded, we rule out Weibull.
- So, we are left with Fre'chet, the most common MDA used in modeling extreme risk.

Fre 'chet Shape Parameter

- $\triangleright \alpha$ is the shape parameter.
- Moments of order r greater than α are infinite.
- Moments of order r smaller than α are finite.
 - Student t distribution has $\alpha \ge 2$. So its mean and variance are well defined.

Fre 'chet MDA Theorem

- ▶ $F \in MDAH$, H Fre 'chet if and only if
- the complement cdf $\bar{F}(x) = x^{-\alpha}L(x)$
- ▶ *L* is slowly varying function
 - $\lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1, t > 0$
- ▶ This restricts the maximum domain of attraction of the Fre 'chet distribution quite a lot, it consists only of what we would call heavy tailed distributions.

Generalized Extreme Value Distribution (GEV)

$$H_{\tau}(x) = e^{-(1+\tau x)^{-\frac{1}{\tau}}}, \tau \neq 0$$

$$H_{\tau}(x) = e^{-e^{-x}}, \tau = 0$$

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^{-n} = e^{-x}$$

- $tail index \tau = \frac{1}{\alpha}$
- Fre 'chet: $\tau > 0$
- Gumbel: $\tau = 0$
- Weibull: $\tau < 0$

Generalized Pareto Distribution

$$G_{\tau}(x) = 1 - (1 + \tau x)^{-\frac{1}{\tau}}$$

$$G_0(x) = 1 - e^{-x}$$

- simply an exponential distribution

$$G_{\tau,\beta} = 1 - \left(1 + \tau \frac{y}{\beta}\right)^{-\frac{1}{\tau}}$$

$$G_{0,\beta} = 1 - e^{-\frac{y}{\beta}}$$

The Excess Function

- ▶ Let *u* be a tail cutoff threshold.
- ▶ The excess function is defined as:
 - $F_u(x) = 1 \overline{F_u}(x)$
 - $\overline{F}_u(x) = P(X u > x | X > u) = \frac{P(X > u + x)}{P(X > u)} = \frac{\overline{F}(x + u)}{\overline{F}(u)}$

Asymptotic Property of Excess Function

- Let $x_F = \inf\{x : F(x) = 1\}.$
- ▶ For each τ , $F \in MDA(H_{\tau})$, if and only if
 - $\lim_{u \to x_F^-} \sup_{0 < x < x_F u} |F_u(x) G_{\tau,\beta(u)}(x)| = 0$
- If $x_F = \infty$, we have
 - $\lim_{u\to\infty} \sup_{x} \left| F_u(x) G_{\tau,\beta(u)}(x) \right| = 0$
- \blacktriangleright Applications: to determine τ , u, etc.

Tail Index Estimation by Quantiles

- Hill, 1975
- Pickands, 1975
- Dekkers and DeHaan, 1990

Hill Estimator

- $\tau_{n,m}^{H} = \frac{1}{m-1} \sum_{i=1}^{m-1} \left(\ln X_{i}^{*} \ln X_{n-m,n}^{*} \right)$
- $\blacktriangleright X^*$: the order statistics of observations
- ▶ *m*: the number of observations in the (left) tail
- Mason (1982) shows that $\tau_{n,m}^{H}$ is a consistent estimator, hence convergence to the true value.
- ▶ Pictet, Dacorogna, and Muller (1996) show that in finite samples the expectation of the Hill estimator is biased.
- ▶ In general, bigger (smaller) *m* gives more (less) biased estimator but smaller (bigger) variance.

POT Plot

Pickands Estimator

$$\tau_{n,m}^{P} = \frac{\ln(X^*_{m} - X^*_{2m})/(X^*_{2m} - X^*_{4m})}{\ln 2}$$

Dekkers and DeHaan Estimator

$$\tau_{n,m}^{D} = \tau_{n,m}^{H} + 1 - \frac{1}{2} \left(1 - \frac{(\tau_{n,m}^{H})^{2}}{\tau_{n,m}^{H2}} \right)^{-1}$$

$$\tau_{n,m}^{H2} = \frac{1}{m-1} \sum_{i=1}^{m-1} (\ln X_i^* - \ln X_m^*)^2$$

VaR using EVT

For a given probability q > F(u) the VaR estimate is calculated by inverting the excess function. We have:

$$\widehat{\text{VaR}_q} = u + \frac{\widehat{\beta}}{\widehat{\tau}} \left(\left(\frac{n}{m} (1 - q) \right)^{-\widehat{\tau}} - 1 \right)$$

Confidence interval can be computed using profile likelihood.

ES using EVT

$$\widehat{ES}_q = \frac{\widehat{VaR}_q}{1-\widehat{\tau}} + \frac{\widehat{\beta} - \widehat{\tau}u}{1-\widehat{\tau}}$$

VaR Comparison

http://www.fea.com/resources/pdf/a_evt_1.pdf