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Risks

» Financial theories say:
the most important single source of profit is risk.
profit « risk.

» I personally do not agree.



What Are Some Risks? (1)

» Bonds:
duration (sensitivity to interest rate)
convexity
term structure models

» Credit:
rating
default models



What Are Some Risks? (2)

» Stocks
volatility
correlations
beta

» Derivatives
delta
gamma
vega



What Are Some Risks? (3)

» FX
volatility
target zones
spreads

term structure models of related currencies



Other Risks?

» Too many to enumerate...
natural disasters, e.g., earthquake
war
politics
operational risk
regulatory risk
wide spread rumors

alien attack!!!

» Practically infinitely many of them...



VaR Definition

» Given a loss distribution, F, quintile 1 > q = 0.95,
» VaR, = F~1(q)



Expected Shortfall

» Suppose we hit a big loss, what is its expected size?
» ES, = E|X|X > VaR]



VaR in Layman Term

» VaR is the maximum loss which can occur with certain
confidence over a holding period (of n days).

» Suppose a daily VaR is stated as $1,000,000 to a 95%
level of confidence.

» There is only a 5% chance that the loss the next day
will exceed $1,000,000.



Why VaR?
» Is it a true way to measure risk?
NO!

» Is it a universal measure accounting for most risks?
NO!

» Isita good measure?
NO!

» Only because the industry and regulators have
adopted it.

It is a widely accepted standard.



VaR Computations

» Historical Simulation
» Variance-CoVariance
» Monte Carlo simulation



Historical Simulations

» Take a historical returns time series as the returns
distribution.

» Compute the loss distribution from the historical
returns distribution.



Historical Simulations Advantages

» Simplest

» Non-parametric, no assumption of distributions, no
possibility of estimation error



Historical Simulations Dis-Advantages

» As all historical returns carry equal weights, it runs the
risk of over-/under- estimate the recent trends.

» Sample period may not be representative of the risks.
» History may not repeat itsellf.
» Cannot accommodate for new risks.

» Cannot incorporate subjective information.



Variance-CoVariance

» Assume all returns distributions are Normal.

» Estimate asset variances and covariances from
historical data.

» Compute portfolio variance.

2
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Variance-CoVariance Example

» 95% confidence level (1.645 stdev from mean)

» Nominal = $10 million

» Price = $100

» Average return = 7.35%

» Standard deviation =1.99%

» The VaR at 95% confidence level = 1.645 x 0.0199 =
0.032736

» The VaR of the portfolio = 0.032736 x 10 million =
$327,360.



Variance-CoVariance Advantages

» Widely accepted approach in banks and regulations.
» Simple to apply; straightforward to explain.
» Datasets immediately available

very easy to estimate from historical data
free data from RiskMetrics

» Can do scenario tests by twisting the parameters.
sensitivity analysis of parameters

give more weightings to more recent data



Variance-CoVariance Disadvantages

» Assumption of Normal distribution for returns, which
is known to be not true.

» Does not take into account of fat tails.

» Does not work with non-linear assets in portfolio, e.g.,
options.



Monte Carlo Simulation

» You create your own returns distributions.
historical data
implied data
economic scenarios

» Simulate the joint distributions many times.

» Compute the empirical returns distribution of the
portfolio.

» Compute the (e.g., 1%, 5%) quantile.



Monte Carlo Simulation Advantages

» Does not assume any specific models, or forms of
distributions.

» Can incorporate any information, even subjective
views.

» Can do scenario tests by twisting the parameters.
sensitivity analysis of parameters

give more weightings to more recent data
» Can work with non-linear assets, e.g., options.
» Can track path-dependence.



Monte Carlo Simulation Disadvantages

» Slow.

To increase the precision by a factor of 10, we must make
100 times more simulations.
Various variance reduction techniques apply.

antithetic variates

control variates

importance sampling

stratified sampling

» Difficult to build a (high) multi-dimensional joint
distribution from data.



100-Year Market Crash

» How do we incorporate rare events into our returns
distributions, hence enhanced risk management?

» Statistics works very well when you have a large
amount of data.

» How do we analyze for (very) small samples?



Fat Tails




QQ

» A QQ plots display the quintiles of the sample data
against those of a standard normal distribution.

» This is the first diagnostic tool in determining whether
the data have fat tails.
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Asymptotic Properties

» The (normalized) mean of a the sample mean of a
large population is normally distributed, regardless of
the generating distribution.

» What about the sample maximum?



Intuition

» Let X4, ..., X,, bei.i.d. with distribution F(x).
» Let the sample maxima be M,, = X(;) = max X;.
l

» PM, <x)=PX;<x,..,.X;, <x)
» =L P(X; < x) = F*'(x)
» Whatis lim F™*(x)?

n—>00



Convergence

» Suppose we can scale the maximums {c, } and change
the locations (means) {d,,}.

» There may exist non-negative sequences of these such
that

¢, 1(M,, —d,)) » Y,Y is not a point
H(x) = lim P(c,,”*(M,, — d,)) < x)
n—>00

= lim P(M,, < c,x +d,,)

n—>00 o

= lim F"(c,x + d,,)

n—>00



Example 1 (Gumbel)

» Fx) =1—e™, x> 0.
» Letc, =171, d,, = 217t logn.
» P(AM,, — 27 tlogn) < x)
» = P(M,, <17 1(x + logn))
) — (1 _ e—(x+logn))n

==

e—x

- —_—p—X
» > e =e ¢ 1y



Example 2 (Fre’chet)

96(

» F(x) =1— 1)

—1—

1
» Letc,, = 0ne,d,, = 0.
PO n"VeM, < x)

= P(M,, < In"/*x)
1 n
P = (1 B (1+n1/ax)a) - (1

)

y = e —x~¢ 1{x>0}

v
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Fisher-Tippett Theorem

» It turns out that H can take only one of the three
possible forms.

» Fre’chet

Dy (x) = e s
» Gumbel

A(x) = 7% 1)
» Weibull

Pu(x) =e —(=0)" 1{x<0}



Maximum Domain of Attraction

» Fre’'chet
Fat tails
E.g., Pareto, Cauchy, student t,

» Gumbel

The tail decay exponentially with all finite moments.
E.g., normal, log normal, gamma, exponential

» Weibull

Thin tailed distributions with finite upper endpoints, hence
bounded maximums.

E.g., uniform distribution



Why Fre’chet?

» Since we care about fat tailed distributions for
financial asset returns, we rule out Gumbel.

» Since financial asset returns are theoretically
unbounded, we rule out Weibull.

» So, we are left with Fre'chet, the most common MDA
used in modeling extreme risk.



Fre’chet Shape Parameter

» «a is the shape parameter.
» Moments of order r greater than « are infinite.
» Moments of order r smaller than « are finite.

Student t distribution has @ > 2. So its mean and variance
are well defined.



Fre ' chet MDA Theorem

» F € MDA H, H Fre’chet if and only if
» the complement cdf F(x) = x~*L(x)

» L is slowly varying function

. L(tx)
;I_)IEIO L(x)

» This restricts the maximum domain of attraction of
the Fre'chet distribution quite a lot, it consists only of
what we would call heavy tailed distributions.

=1,t>0



Generalized Extreme Value Distribution (GEV)

_1
H.(x) =e +™) T ¢ £
H(x)=e€ ,7=0

lim (1 + %)_n =e*

n—>00

v Vv

tail index 7 =

A 4
R [+

Fre'chet: 7> 0
Gumbel:t =0
Weibull: 1< 0

v VvV Vv



Generalized Pareto Distribution

1
» Gi(x)=1—-(1+1x) <
» Go(x) =1—e7*
simply an exponential distribution

» LetY = X, X~G;.

1

»Grp=1-(1472) "

y

4 GO,'B=1_6 B



The Excess Function

» Let u be a tail cutoff threshold.
» The excess function is defined as:
Fu(x) =1- EL(X)

Ex)=PX—-u>x|X>u) = P(X>utx) _ Flx+u)

P(X>u) F(u)




Asymptotic Property of Excess Function
» Let xp = inf{x: F(x) = 1}.
» Foreach 1, F € MDA(H,), if and only if

lim sup |F,(x) — Gz p(u) (x)| =0

UDXF 0<x<Xp—U

» If xp = oo, we have
1}1_{210 Sup|Fu(x) — Gr,ﬁ(u)(x)| =0
X

» Applications: to determine 7, u, etc.



Tail Index Estimation by Quantiles

» Hill, 1975
» Pickands, 1975

» Dekkers and DeHaan, 1990



Hill Estimator

H __ 1 -1 * *
4 Tnm — m_12ﬁ1 (lnX A InX n—m,n)
» X*: the order statistics of observations

» m: the number of observations in the (left) tail

» Mason (1982) shows that 7, ,,” is a consistent

estimator, hence convergence to the true value.

» Pictet, Dacorogna, and Muller (1996) show that in
finite samples the expectation of the Hill estimator is

biased.

» In general, bigger (smaller) m gives more (less) biased
estimator but smaller (bigger) variance.



POT Plot
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Pickands Estimator

y 7. P In(X*m—X"2m)/ (X" 2om—X"a4m)
nm In 2




Dekkers and DeHaan Estimator

H?2
Tnm

H\2\
> Tn,mD = Tn,mH + 1 —%<1 — (tnm”) )

1 _
Y TP = EZﬁll(lnX*i —InX*,,)?



VaR using EVT

» For a given probability g > F(u) the VaR estimate is
calculated by inverting the excess function. We have:

. —7
» VaR, =u+§<(%(1—q)) — 1)

» Confidence interval can be computed using profile

likelihood.



ES using EVT

) ES, = ~2Ra | Bt

q 1-% 1-%




VaR Comparison
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-5% 0%



