Optimal Trading Strategies

Stochastic Control

Haksun Li
haksun.li@numericalmethod.com
www.numericalmethod.com
Speaker Profile

Dr. Haksun Li
CEO, Numerical Method Inc.
(Ex-)Adjunct Professors, Industry Fellow, Advisor, Consultant with the National University of Singapore, Nanyang Technological University, Fudan University, the Hong Kong University of Science and Technology.
Quantitative Trader/Analyst, BNPP, UBS
PhD, Computer Sci, University of Michigan Ann Arbor
M.S., Financial Mathematics, University of Chicago
B.S., Mathematics, University of Chicago
References

Mean Reversion Trading
Stochastic Control

- We model the difference between the log-returns of two assets as an Ornstein-Uhlenbeck process.
- We compute the optimal position to take as a function of the deviation from the equilibrium.
- This is done by solving the corresponding the Hamilton-Jacobi-Bellman equation.
Formulation

- Assume a risk free asset M_t, which satisfies
 \[dM_t = rM_t dt \]
- Assume two assets, A_t and B_t.
- Assume B_t follows a geometric Brownian motion.
 \[dB_t = \mu B_t dt + \sigma B_t dz_t \]
- x_t is the spread between the two assets.
 \[x_t = \log A_t - \log B_t \]
Ornstein-Uhlenbeck Process

- We assume the spread, the basket that we want to trade, follows a mean-reverting process.

 \[dx_t = k(\theta - x_t)dt + \eta d\omega_t \]

- \(\theta \) is the long term equilibrium to which the spread reverts.

- \(k \) is the rate of reversion. It must be positive to ensure stability around the equilibrium value.
Let ρ denote the instantaneous correlation coefficient between z and ω.

\[E[d\omega_t dz_t] = \rho dt \]
Univariate Ito’s Lemma

- Assume
 - \(dX_t = \mu_t \, dt + \sigma_t \, dB_t \)
 - \(f(t, X_t) \) is twice differentiable of two real variables
- We have
 - \(df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{\sigma_t^2}{2} \frac{\partial^2 f}{\partial x^2} \right) \, dt + \sigma_t \frac{\partial f}{\partial x} \, dB_t \)
Log example

- For G.B.M., \(dX_t = \mu X_t dt + \sigma X_t dz_t \), \(d \log X_t =? \)
- \(f(x) = \log(x) \)
- \(\frac{\partial f}{\partial t} = 0 \)
- \(\frac{\partial f}{\partial x} = \frac{1}{x} \)
- \(\frac{\partial^2 f}{\partial x^2} = -\frac{1}{x^2} \)
- \(d \log X_t = \left(\mu X_t \frac{1}{X_t} + \frac{(\sigma X_t)^2}{2} \left(-\frac{1}{X_t^2} \right) \right) dt + \sigma X_t \left(\frac{1}{X_t} \right) dB_t \)
- \(= \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dB_t \)
Assume
\[X_t = (X_{1t}, X_{2t}, \ldots, X_{nt}) \] is a vector Ito process
\[f(x_{1t}, x_{2t}, \ldots, x_{nt}) \] is twice differentiable
We have
\[df(X_{1t}, X_{2t}, \ldots, X_{nt}) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(X_{1t}, X_{2t}, \ldots, X_{nt}) dX_i(t) \]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2}{\partial x_i \partial x_j} f(X_{1t}, X_{2t}, \ldots, X_{nt}) d[X_i, X_j](t) \]
Multivariate Example

- \[\log A_t = x_t + \log B_t \]
- \[A_t = \exp(x_t + \log B_t) \]
- \[\frac{\partial A_t}{\partial x_t} = \exp(x_t + \log B_t) = A_t \]
- \[\frac{\partial A_t}{\partial B_t} = \exp(x_t + \log B_t) \frac{1}{B_t} = \frac{A_t}{B_t} \]
- \[\frac{\partial^2 A_t}{\partial x_t^2} = \frac{\partial A_t}{\partial x_t} = A_t \]
- \[\frac{\partial^2 A_t}{\partial B_t^2} = \frac{\partial}{\partial B_t} \left(\frac{A_t}{B_t} \right) = 0 \]
- \[\frac{\partial^2 A_t}{\partial B_t \partial x_t} = \frac{\partial}{\partial B_t} \left(\frac{\partial A_t}{\partial x_t} \right) = \frac{\partial A_t}{\partial B_t} = \frac{A_t}{B_t} \]
What is the Dynamic of Asset A_t?

\[\frac{\partial A_t}{\partial t} = \frac{\partial A_t}{\partial x} dx_t + \frac{\partial A_t}{\partial B_t} dB_t + \frac{1}{2} \frac{\partial^2 A_t}{\partial x^2} (dx_t)^2 + \frac{\partial^2 A_t}{\partial B_t \partial x} (dx_t)(dB_t) \]

\[= A_t dx_t + \frac{A_t}{B_t} dB_t + \frac{1}{2} A_t (dx_t)^2 + \frac{A_t}{B_t} (dx_t)(dB_t) \]

\[= A_t \left[k(\theta - x_t)dt + \eta d\omega_t \right] + \frac{A_t}{B_t} \left[\mu B_t dt + \sigma B_t dz_t \right] + \frac{1}{2} A_t \eta^2 dt + \frac{A_t}{B_t} \rho \eta \sigma B_t dt \]
Dynamic of Asset A_t

\[\partial A_t = A_t [k(\theta - x_t)dt + \eta d\omega_t] + A_t [\mu dt + \sigma dz_t] + \frac{1}{2} A_t \eta^2 dt + A_t \rho \eta \sigma dt \]

\[= A_t \left[k(\theta - x_t) + \mu + \frac{1}{2} \eta^2 + \rho \eta \sigma \right] dt + A_t \eta d\omega_t + A_t \sigma dz_t \]

\[= A_t \left\{ \left[\mu + k(\theta - x_t) + \frac{1}{2} \eta^2 + \rho \eta \sigma \right] dt + \sigma dz_t + \eta d\omega_t \right\} \]
Notations

- V_t: the value of a self-financing pairs trading portfolio
- h_t: the portfolio weight for stock A
- $\tilde{h}_t = -h_t$: the portfolio weight for stock B
Self-Financing Portfolio Dynamic

\[
\frac{dV_t}{V_t} = h_t \frac{dA_t}{A_t} + \tilde{h}_t \frac{dB_t}{B_t} + \frac{dM_t}{M_t}
\]

\[
= h_t \left\{ \left[\mu + k(\theta - x_t) + \frac{1}{2} \eta^2 + \rho \eta \sigma \right] dt + \sigma dz_t + \eta d\omega_t \right\} - h_t \{ \mu dt + \sigma dz_t \} + r dt
\]

\[
= h_t \left\{ \left[k(\theta - x_t) + \frac{1}{2} \eta^2 + \rho \eta \sigma \right] dt + \eta d\omega_t \right\} + r dt
\]

\[
= \left\{ h_t \left[k(\theta - x_t) + \frac{1}{2} \eta^2 + \rho \eta \sigma \right] + r \right\} dt + h_t \eta d\omega_t
\]
Power Utility

- Investor preference:
 - \(U(x) = x^\gamma \)
 - \(x \geq 0 \)
 - \(0 < \gamma < 1 \)
Problem Formulation

- \(\max_{h_t} E[V_T^y] \), s.t.,
- \(V(0) = v_0, x(0) = x_0 \)
- \(dx_t = k(\theta - x_t)dt + \eta d\omega_t \)
- \(dV_t = h_t dx_t = h_t k(\theta - x_t)dt + h_t \eta d\omega_t \)
- Note that we simplify GBM to BM of \(V_t \), and remove some constants.
Dynamic Programming

- Consider a stage problem to minimize (or maximize) the accumulated costs over a system path.

\[
\text{Cost} = c_3 + \sum_{t=0}^{2} c_t
\]

Cost = $c_3 + \sum_{t=0}^{2} c_t$
Dynamic Programming Formulation

- **State change:** $x_{k+1} = f_k(x_k, u_k, \omega_k)$
 - k: time
 - x_k: state
 - u_k: control decision selected at time k
 - ω_k: a random noise

- **Cost:** $g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, \omega_k)$

- **Objective:** minimize (maximize) the expected cost.
 - We need to take expectation to account for the noise, ω_k.
Principle of Optimality

Let $\pi^* = \{\mu_0^*, \mu_1^*, \ldots, \mu_{N-1}^*\}$ be an optimal policy for the basic problem, and assume that when using π^*, a given state x_i occurs at time i with positive probability. Consider the sub-problem whereby we are at x_i at time i and wish to minimize the “cost-to-go” from time i to time N.

- $E\{g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, u_k, \omega_k)\}$
- Then the truncated policy $\{\mu_i^*, \mu_{i+1}^*, \ldots, \mu_{N-1}^*\}$ is optimal for this sub-problem.
Dynamic Programming Algorithm

For every initial state x_0, the optimal cost $J^* (x_k)$ of the basic problem is equal to $J_0 (x_0)$, given by the last step of the following algorithm, which proceeds backward in time from period $N - 1$ to period 0:

- $J_N (x_N) = g_N (x_N)$
- $J_k (x_k) = \min_{u_k} E \{ g_k (x_k, u_k, \omega_k) + J_{k+1} (f_k (x_k, u_k, \omega_k)) \}$
Value function

- Terminal condition:
 \[G(T, V, x) = V^γ \]

- DP equation:
 \[G(t, V_t, x_t) = \max_{h_t} E\{G(t + dt, V_{t+dt}, x_{t+dt})\} \]
 \[G(t, V_t, x_t) = \max_{h_t} E\{G(t, V_t, x_t) + \Delta G\} \]

- By Ito’s lemma:
 \[\Delta G = G_t dt + G_V(dV) + G_x(dx) + \frac{1}{2} G_{VV}(dV)^2 + \frac{1}{2} G_{xx}(dx)^2 + G_{Vx}(dV)(dx) \]
Hamilton-Jacobi-Bellman Equation

- Cancel $G(t, V_t, x_t)$ on both LHS and RHS.
- Divide by time discretization, Δt.
- Take limit as $\Delta t \to 0$, hence Ito.
- $0 = \max_{h_t} E\{\Delta G\}$
- $\max_{h_t} E \left\{ G_t dt + G_V (dV) + G_x (dx) + \frac{1}{2} G_{VV} (dV)^2 + \frac{1}{2} G_{xx} (dx)^2 + G_{Vx} (dV)(dx) \right\} = 0$
- The optimal portfolio position is h_t^*.
HJB for Our Portfolio Value

\[
\max_{h_t} E \left\{ G_t dt + G_V (dV) + G_x (dx) + \frac{1}{2} G_{VV} (dV)^2 + \frac{1}{2} G_{xx} (dx)^2 + G_{Vx} (dV)(dx) \right\} = 0
\]

\[
\max_{h_t} E \left\{ \begin{array}{l}
G_t dt + G_V (h_t k(\theta - x_t) dt + h_t \eta d\omega_t) + G_x (dx) + \\
\frac{1}{2} G_{VV} (h_t k(\theta - x_t) dt + h_t \eta d\omega_t)^2 + \frac{1}{2} G_{xx} (dx)^2 + \\
G_{Vx} (h_t k(\theta - x_t) dt + h_t \eta d\omega_t) (dx)
\end{array} \right\} = 0
\]

\[
\max_{h_t} E \left\{ \begin{array}{l}
G_t dt + G_V (h_t k(\theta - x_t) dt + h_t \eta d\omega_t) + \\
G_x (k(\theta - x_t) dt + \eta d\omega_t) + \\
\frac{1}{2} G_{VV} (h_t k(\theta - x_t) dt + h_t \eta d\omega_t)^2 + \\
\frac{1}{2} G_{xx} (k(\theta - x_t) dt + \eta d\omega_t)^2 + \\
G_{Vx} (h_t k(\theta - x_t) dt + h_t \eta d\omega_t) \times (k(\theta - x_t) dt + \eta d\omega_t)
\end{array} \right\} = 0
\]
Taking Expectation

- All $\eta d\omega_t$ disappear because of the expectation operator.
- Only the deterministic dt terms remain.
- Divide LHR and RHS by dt.

$$
\max_{h_t} \left\{ G_t + G_V (h_t k(\theta - x_t)) + \right.
\left. G_x (k(\theta - x_t)) + \frac{1}{2} G_{VV} (h_t \eta)^2 + \frac{1}{2} G_{xx} \eta^2 \right.
\left. + G_{Vx} (h_t \eta^2) \right\} = 0
$$
Dynamic Programming Solution

- Solve for the cost-to-go function, G_t.
- Assume that the optimal policy is h_t^*.
First Order Condition

- Differentiate w.r.t. \(h_t \).
- \(G_V(k(\theta - x_t)) + h_t^* G_{VV}\eta^2 + G_{Vx}\eta^2 = 0 \)
- \(h_t^* = -\frac{G_V(k(\theta - x_t)) + G_{Vx}\eta^2}{G_{VV}\eta^2} \)
- In order to determine the optimal position, \(h_t^* \), we need to solve for \(G \) to get \(G_V \), \(G_{Vx} \), and \(G_{VV} \).
The Partial Differential Equation (1)

\[G_t - G_V \left(\frac{G_V k(\theta - x_t) + G_{Vx} \eta^2}{G_{VV} \eta^2} k(\theta - x_t) \right) + G_x \left(k(\theta - x_t) \right) + \]

\[\frac{1}{2} G_{VV} \eta^2 \left(\frac{G_V k(\theta - x_t) + G_{Vx} \eta^2}{G_{VV} \eta^2} \right)^2 + \frac{1}{2} G_{xx} \eta^2 - G_{Vx} \eta^2 \frac{G_V k(\theta - x_t) + G_{Vx} \eta^2}{G_{VV} \eta^2} = 0 \]
The Partial Differential Equation (2)

\[
G_t - G_V k(\theta - x_t) \frac{G_V (k(\theta - x_t) + G_{Vx} \eta^2)}{G_{VV} \eta^2} + G_x (k(\theta - x_t)) + \frac{1}{2} \left[G_V (k(\theta - x_t) + G_{Vx} \eta^2) \right]^2 \frac{1}{G_{VV} \eta^2} + \frac{1}{2} G_{xx} \eta^2 - G_{Vx} \frac{G_V (k(\theta - x_t) + G_{Vx} \eta^2)}{G_{VV}} = 0
\]
Dis-equilibrium

- Let $b = k(\theta - x_t)$. Rewrite:

 $$G_t - G_V b \left(\frac{G_V b + G_{Vx} \eta^2}{G_{VV} \eta^2} \right) + G_x b + \frac{1}{2} \left[\frac{G_V b + G_{Vx} \eta^2}{G_{VV} \eta^2} \right]^2 + \frac{1}{2} G_{xx} \eta^2 -$$

 $$G_{Vx} \frac{G_V b + G_{Vx} \eta^2}{G_{VV}} = 0$$

- Multiply by $G_{VV} \eta^2$.

 $$G_t G_{VV} \eta^2 - G_V b (G_V b + G_{Vx} \eta^2) + G_x b G_{VV} \eta^2 +$$

 $$\frac{1}{2} \left[G_V b + G_{Vx} \eta^2 \right]^2 + \frac{1}{2} G_{xx} G_{VV} \eta^4 -$$

 $$G_{Vx} \eta^2 \left[G_V b + G_{Vx} \eta^2 \right] = 0$$
Simplification

Note that

\[-G_V b(G_V b + G_{Vx} \eta^2) + \frac{1}{2} [G_V b + G_{Vx} \eta^2]^2 - G_{Vx} \eta^2 [G_V b + G_{Vx} \eta^2] = -\frac{1}{2} (G_V b + G_{Vx} \eta^2)^2 \]

The PDE becomes

\[G_t G_{VV} \eta^2 + G_x b G_{VV} \eta^2 + \frac{1}{2} G_{xx} G_{VV} \eta^4 - \frac{1}{2} (G_V b + G_{Vx} \eta^2)^2 = 0 \]
The Partial Differential Equation (3)

\[G_t G_{VV} \eta^2 + G_x b G_{VV} \eta^2 + \frac{1}{2} G_{xx} G_{VV} \eta^4 - \frac{1}{2} (G_V b + G_{Vx} \eta^2)^2 = 0 \]
Ansatz for G

- \(G(t, V, x) = f(t, x)V^\gamma \)
- \(G(T, V, x) = V^\gamma \)
- \(f(T, x) = 1 \)
- \(G_t = V^\gamma f_t \)
- \(G_V = \gamma V^{\gamma - 1}f \)
- \(G_{VV} = \gamma (\gamma - 1)V^{\gamma - 2}f \)
- \(G_x = V^\gamma f_x \)
- \(G_{Vx} = \gamma V^{\gamma - 1}f_x \)
- \(G_{xx} = V^\gamma f_{xx} \)
Another PDE (1)

- \(V^\gamma f_t \gamma (\gamma - 1) V^{\gamma - 2} f \eta^2 + V^\gamma f_x b \gamma (\gamma - 1) V^{\gamma - 2} f \eta^2 + \)
 \[\frac{1}{2} V^\gamma f_{xx} \gamma (\gamma - 1) V^{\gamma - 2} f \eta^4 - \]
 \[\frac{1}{2} (\gamma V^{\gamma - 1} f b + \gamma V^{\gamma - 1} f_x \eta^2)^2 = 0 \]

- Divide by \(\gamma (\gamma - 1) \eta^2 V^{2\gamma - 2} \).

- \(f_t f + f_x b f + \frac{1}{2} f_{xx} f \eta^2 - \frac{\gamma}{2(\gamma - 1)} \left(f \frac{b}{\eta} + f_x \eta \right)^2 = 0 \)
Ansatz for f

- $ff_t + bf.fx + \frac{1}{2} \eta^2 f.fx\eta^2 - \frac{\gamma}{2(\gamma - 1)} \left(\frac{b}{\eta} f + \eta fx \right)^2 = 0$
- $f(t, x) = g(t) \exp[x\beta(t) + x^2\alpha(t)] = g \exp(x\beta + x^2\alpha)$
- $f_t =
 \quad g_t \exp(x\beta + x^2\alpha) + g \exp(x\beta + x^2\alpha) (x\beta_t + x^2\alpha_t)$
- $f_x = g \exp(x\beta + x^2\alpha) (\beta + 2x\alpha)$
- $f_{xx} =
 \quad g \exp(x\beta + x^2\alpha) (\beta + 2x\alpha)^2 + g \exp(x\beta + x^2\alpha) (2\alpha)$
- $\frac{f_x}{f} = \beta + 2\alpha x$
Boundary Conditions

- \(f(T, x) = g(T) \exp[x\beta(T) + x^2\alpha(T)] = 1 \)
- \(g(T) = 1 \)
- \(\alpha(T) = 0 \)
- \(\beta(T) = 0 \)
Yet Another PDE (1)

- \(g \exp(x\beta + x^2\alpha) [g_t \exp(x\beta + x^2\alpha) + g \exp(x\beta + x^2\alpha) (x\beta_t + x^2\alpha_t)] + bg \exp(x\beta + x^2\alpha) g \exp(x\beta + x^2\alpha) (\beta + 2x\alpha) + \frac{1}{2} \eta^2 g \exp(x\beta + x^2\alpha) [g \exp(x\beta + x^2\alpha) (\beta + 2x\alpha)^2 + g \exp(x\beta + x^2\alpha) (2\alpha)] - \)
 \[\frac{\gamma}{2(\gamma-1)} \left(\frac{b}{\eta} g \exp(x\beta + x^2\alpha) + \eta g \exp(x\beta + x^2\alpha) (\beta + 2x\alpha) \right)^2 = 0 \]

- Divide by \(g \exp(x\beta + x^2\alpha) \exp(x\beta + x^2\alpha) \).

- \([g_t + g(x\beta_t + x^2\alpha_t)] + bg(\beta + 2x\alpha) + \frac{1}{2} \eta^2 [g(\beta + 2x\alpha)^2 + g(2\alpha)] - \)
 \[\frac{\gamma}{2(\gamma-1)} g \left(\frac{b}{\eta} + \eta (\beta + 2x\alpha) \right)^2 = 0 \]

- \(g_t + g(x\beta_t + x^2\alpha_t) + bg(\beta + 2x\alpha) + \frac{1}{2} \eta^2 g(\beta + 2x\alpha)^2 + \eta^2 g \alpha - \)
 \[\frac{\gamma}{2(\gamma-1)} g \left(\frac{b}{\eta} + \eta (\beta + 2x\alpha) \right)^2 = 0 \]
Yet Another PDE (2)

- $\lambda = \frac{\gamma}{2(\gamma-1)}$
- $g_t + g(x\beta_t + x^2\alpha_t) + bg(\beta + 2x\alpha) +$
- $\frac{1}{2}\eta^2 g(\beta + 2x\alpha)^2 + \eta^2 g\alpha - \lambda g \left(\frac{b}{\eta} + \eta(\beta + 2x\alpha)\right)^2 = 0$
Expansion in x

$g_t + gx\beta_t + gx^2\alpha_t + bg\beta + 2x\alpha bg + \frac{1}{2}\eta^2 g (\beta^2 + 4x^2\alpha^2 + 4x\alpha\beta) + \eta^2 g\alpha - \lambda g \left(\frac{b^2}{\eta^2} + \eta^2 \beta^2 + 4\eta^2 x^2\alpha^2 + 2b\beta + 4b\alpha x + 4\eta^2 x\alpha\beta \right) = 0$

$g_t + gx\beta_t + gx^2\alpha_t + k(\theta - x)g\beta + 2\alpha k(\theta - x)g + \frac{1}{2}\eta^2 g (\beta^2 + 4x^2\alpha^2 + 4x\alpha\beta) + \eta^2 g\alpha - \lambda g \left(\frac{k^2(\theta - x)^2}{\eta^2} + \eta^2 \beta^2 + 4\eta^2 x^2\alpha^2 + 2k(\theta - x)\beta + 4k(\theta - x)x\alpha + 4\eta^2 x\alpha\beta \right) = 0$

$g_t + gx\beta_t + gx^2\alpha_t + kg\beta\theta - kg\beta x + 2x\alpha kg\theta - 2akg x^2 + \frac{1}{2}\eta^2 g\beta^2 + 2\eta^2 gx^2\alpha^2 + 2\eta^2 gx\alpha\beta + \eta^2 g\alpha - \frac{\lambda g}{\eta^2} k^2\theta^2 + 2\frac{\lambda g}{\eta^2} k^2\theta x - \frac{\lambda g}{\eta^2} k^2 x^2 - \lambda g\eta^2 \beta^2 - 4\lambda g\eta^2 x^2\alpha^2 - 2\lambda g k\beta\theta + 2\lambda g k\beta x - 4\lambda g k\theta x\alpha + 4\lambda g k x^2\alpha - 4\lambda g \eta^2 x\alpha\beta = 0$
Grouping in x

\[
\left(g_t + kg\beta \theta + \frac{1}{2} \eta^2 g\beta^2 + \eta^2 g\alpha - \frac{\lambda g}{\eta^2} k^2 \theta^2 - \lambda g\eta^2 \beta^2 - 2\lambda g k\beta \theta \right) + \\
\left(g\beta_t - k g\beta + 2\alpha k g\theta + 2\eta^2 g\alpha \beta + 2 \frac{\lambda g}{\eta^2} k^2 \theta + 2\lambda g k\beta - 4\lambda g k\theta \alpha - 4\lambda g \eta^2 \alpha \beta \right) x + \\
\left(g\alpha_t - 2\alpha k g + 2\eta^2 g\alpha^2 - \frac{\lambda g}{\eta^2} k^2 - 4\lambda g \eta^2 \alpha^2 + 4\lambda g k \alpha \right) x^2 = 0
\]
The Three PDE’s (1)

\[g\alpha_t - 2\alpha k g + 2\eta^2 g\alpha^2 - \frac{\lambda g}{\eta^2} k^2 - 4\lambda g \eta^2 \alpha^2 + 4\lambda g k \alpha = 0 \]

\[g\beta_t - k g \beta + 2\alpha k g \theta + 2\eta^2 g\alpha \beta + 2\frac{\lambda g}{\eta^2} k^2 \theta + 2\lambda g k \beta - 4\lambda g k \theta \alpha - 4\lambda g \eta^2 \alpha \beta = 0 \]

\[g_t + k g \beta \theta + \frac{1}{2} \eta^2 g \beta^2 + \eta^2 g \alpha - \frac{\lambda g}{\eta^2} k^2 \theta^2 - \lambda g \eta^2 \beta^2 - 2\lambda g k \beta \theta = 0 \]
PDE in α

- $\alpha_t + (2\eta^2 - 4\lambda\eta^2)\alpha^2 + (4\lambda k - 2k)\alpha - \frac{\lambda}{\eta^2} k^2 = 0$

- $\alpha_t = \frac{\lambda}{\eta^2} k^2 + 2k (1 - 2\lambda)\alpha + 2\eta^2 (2\lambda - 1)\alpha^2$
PDE in β, α

\[\beta_t - k\beta + 2\eta^2\alpha\beta + 2\lambda k\beta - 4\lambda \eta^2 \alpha \beta - 4\lambda k \theta \alpha + 2\frac{\lambda}{\eta^2} k^2 \theta + 2 \alpha k \theta = 0 \]

\[\beta_t = (k - 2\eta^2\alpha - 2\lambda k + 4\lambda \eta^2 \alpha)\beta + \left(4\lambda k \theta \alpha - 2\frac{\lambda}{\eta^2} k^2 \theta - 2 \alpha k \theta \right) \]
PDE in β, α, g

$g_t + kg\beta \theta + \frac{1}{2} \eta^2 g\beta^2 + \eta^2 g\alpha - \frac{\lambda g}{\eta^2} k^2 \theta^2 - \lambda g\eta^2 \beta^2 - 2\lambda gk\beta \theta = 0$

$g_t = -kg\beta \theta - \frac{1}{2} \eta^2 g\beta^2 - \eta^2 g\alpha + \frac{\lambda g}{\eta^2} k^2 \theta^2 + \lambda g\eta^2 \beta^2 + 2\lambda gk\beta \theta$

$g_t = g \left(-k\beta \theta - \frac{1}{2} \eta^2 \beta^2 - \eta^2 \alpha + \frac{\lambda}{\eta^2} k^2 \theta^2 + \lambda \eta^2 \beta^2 + 2\lambda k\beta \theta \right)$
Riccati Equation

- A Riccati equation is any ordinary differential equation that is quadratic in the unknown function.

\[\alpha_t = \frac{\lambda}{\eta^2} k^2 + 2k(1 - 2\lambda)\alpha + 2\eta^2(2\lambda - 1)\alpha^2 \]

\[\alpha_t = A_0 + A_1 \alpha + A_2 \alpha^2 \]
Solving a Riccati Equation by Integration

- Suppose a particular solution, α_1, can be found.
- $\alpha = \alpha_1 + \frac{1}{z}$ is the general solution, subject to some boundary condition.
Particular Solution

- Either α_1 or α_2 is a particular solution to the ODE. This can be verified by mere substitution.

- $\alpha_{1,2} = \frac{-A_1 \pm \sqrt{A_1^2 - 4A_2A_0}}{2A_2}$
\textbf{z Substitution}

- Suppose \(\alpha = \alpha_1 + \frac{1}{z} \).

\[
\frac{\dot{1}}{z} = A_0 + A_1 \left(\alpha_1 + \frac{1}{z} \right) + A_2 \left(\alpha_1 + \frac{1}{z} \right)^2
\]

\[
= A_0 + \left(A_1 \alpha_1 + A_1 \frac{1}{z} \right) + \left(A_2 \alpha_1^2 + A_2 \frac{1}{z^2} + 2A_2 \frac{\alpha_1}{z} \right)
\]

\[
= A_0 + \left(A_1 \alpha_1 + A_1 \frac{1}{z} \right) + \left(A_2 \alpha_1^2 + A_2 \frac{1}{z^2} + 2A_2 \frac{\alpha_1}{z} \right)
\]

\[
= \left(A_0 + A_1 \alpha_1 + A_2 \alpha_1^2 \right) + \left(\frac{A_1 + 2A_2 \alpha_1}{z} \right) + \frac{A_2}{z^2}
\]

- goes to 0 by the definition of \(\alpha_1 \)
Solving z

\[
\begin{align*}
\left(\frac{\dot{z}}{z}\right) &= \left(\frac{A_1 + 2\alpha_1 A_2}{z}\right) + \frac{A_2}{z^2} \\
- \frac{1}{z^2} \ddot{z} &= \left(\frac{A_1 + 2\alpha_1 A_2}{z}\right) + \frac{A_2}{z^2} \\
1^{st} \text{ order linear ODE} & \\
\dot{z} + (A_1 + 2\alpha_1 A_2)z &= -A_2 \\
z(t) &= \frac{-A_2}{A_1 + 2\alpha_1 A_2} + C \exp\left(-\left(A_1 + 2\alpha_1 A_2\right)t\right)
\end{align*}
\]
Solving for α

$\alpha = \alpha_1 + \frac{1}{-\frac{A_2}{A_1+2\alpha_1A_2} + C \exp(-(A_1+2\alpha_1A_2)t)}$

boundary condition:

$\alpha(T) = 0$

$\alpha_1 + \frac{1}{-\frac{A_2}{A_1+2\alpha_1A_2} + C \exp(-(A_1+2\alpha_1A_2)T)} = 0$

$C \exp(-(A_1 + 2\alpha_1A_2)T) = -\frac{1}{\alpha_1} + \frac{A_2}{A_1+2\alpha_1A_2}$

$C = \exp((A_1 + 2\alpha_1A_2)T) \left[\frac{A_2}{A_1+2\alpha_1A_2} - \frac{1}{\alpha_1} \right]$
\[\alpha = \alpha_1 + \frac{1}{-A_2/A_1+2\alpha_1A_2} + c \exp(-(A_1+2\alpha_1A_2)t) \]

\[= \alpha_1 + \frac{1}{-A_2/A_1+2\alpha_1A_2 + \exp((A_1+2\alpha_1A_2)(T-t))(A_2/A_1+2\alpha_1A_2 - 1/\alpha_1)} \exp(-(A_1+2\alpha_1A_2)t) \]

\[= \alpha_1 + \frac{1}{-A_2/A_1+2\alpha_1A_2 + \exp((A_1+2\alpha_1A_2)(T-t))(A_2/A_1+2\alpha_1A_2 - 1/\alpha_1)} \]

\[= \alpha_1 + \frac{\alpha_1(A_1+2\alpha_1A_2)}{-\alpha_1A_2 + \exp((A_1+2\alpha_1A_2)(T-t))(\alpha_1A_2 - A_1 - 2\alpha_1A_2)} \]
\(\alpha \) Solution (2)

\[
\alpha = \alpha_1 + \frac{\alpha_1 (A_1 + 2 \alpha_1 A_2)}{-\alpha_1 A_2 + \exp((A_1 + 2 \alpha_1 A_2)(T-t))(-A_1 - \alpha_1 A_2)}
\]

\[
= \alpha_1 \left[1 - \frac{A_1 + 2 \alpha_1 A_2}{A_2 + \exp((A_1 + 2 \alpha_1 A_2)(T-t))\left(\frac{A_1}{\alpha_1} + A_2\right)} \right]
\]

\[
= \alpha_1 \left[1 - \frac{A_1 + 2 \alpha_1}{1 + \left(\frac{A_1}{\alpha_1 A_2} + 1\right)\exp((A_1 + 2 \alpha_1 A_2)(T-t))} \right]
\]
\[\alpha(t) = \frac{k}{2\eta^2} \left[(1 - \sqrt{1 - \gamma}) + \frac{2\sqrt{1 - \gamma}}{1 + \left(1 - \frac{2}{1 - \sqrt{1 - \gamma}}\right) \exp \left(\frac{2k}{\sqrt{1 - \gamma}} (T - t) \right)} \right] \]
Solving β

- $\beta_t = (k - 2\eta^2\alpha - 2\lambda k + 4\lambda\eta^2\alpha)\beta + \left(4\lambda k\theta\alpha - 2\frac{\lambda}{\eta^2}k^2\theta - 2\alpha k\theta\right)$
- Let $\tau = T - t$
- $\hat{\beta}(\tau) = \beta(T - t)$
- $\hat{\beta}_\tau(\tau) = -\beta_t(\tau)$
- $-\hat{\beta}_\tau(\tau) = \beta_t(\tau) = \left(k - 2\eta^2\alpha(\tau) - 2\lambda k + 4\lambda\eta^2\alpha(\tau)\right)\beta(\tau) + \left(4\lambda k\theta\alpha(\tau) - 2\frac{\lambda}{\eta^2}k^2\theta - 2\alpha(\tau)k\theta\right)$
- $\hat{\beta}_\tau(\tau) = (-k + 2\eta^2\hat{\alpha} + 2\lambda k - 4\lambda\eta^2\hat{\alpha})\hat{\beta} + \left(-4\lambda k\theta\hat{\alpha} + 2\frac{\lambda}{\eta^2}k^2\theta + 2\hat{\alpha}k\theta\right)$
- $\hat{\beta}_\tau(\tau) = (2\lambda - 1)k + 2\eta^2\hat{\alpha}(1 - 2\lambda)\hat{\beta} + \left(2\hat{\alpha}k\theta(1 - 2\lambda) + 2\frac{\lambda}{\eta^2}k^2\theta\right)$
First Order Non-Constant Coefficients

\[\beta_\tau = B_1 \hat{\beta} + B_2 \]

\[B_1(\tau) = (2\lambda - 1)k + 2\eta^2 \hat{\alpha}(1 - 2\lambda) \]

\[B_2(\tau) = 2\hat{\alpha}k\theta(1 - 2\lambda) + 2 \frac{\lambda}{\eta^2} k^2 \theta \]
Integrating Factor (1)

- $\hat{\beta}_\tau - B_1 \hat{\beta} = B_2$
- We try to find an integrating factor $\mu = \mu(\tau)$ s.t.

 $\frac{d}{d\tau} (\mu \hat{\beta}) = \mu \frac{d\hat{\beta}}{d\tau} + \hat{\beta} \frac{d\mu}{d\tau} = \mu B_2$
- Divide LHS and RHS by $\mu \hat{\beta}$.

 $\frac{1}{\hat{\beta}} \frac{d\hat{\beta}}{d\tau} + \frac{1}{\mu} \frac{d\mu}{d\tau} = \frac{B_2}{\hat{\beta}}$
- By comparison,

 $-B_1 = \frac{1}{\mu} \frac{d\mu}{d\tau}$
Integrating Factor (2)

\[\int -B_1 d\tau = \int \frac{d\mu}{\mu} = \log \mu + C \]

\[\mu = \exp(\int -B_1 d\tau) \]

\[\mu \hat{\beta} = \int \mu B_2 d\tau + C \]

\[\hat{\beta} = \frac{\int \mu B_2 d\tau + C}{\mu} \]

\[\hat{\beta} = \frac{\int \exp(\int -B_1 du) B_2 d\tau + C}{\exp(\int -B_1 d\tau)} \]
\(\hat{\beta} \) Solution

\[\hat{\beta} = \frac{\int_{0}^{\tau} \exp(\int_{0}^{\tau} -B_1(u)du)B_2(s)ds}{\exp(\int_{0}^{\tau} -B_1(u)du)} + C \]

\[\hat{\beta}(\tau) = \exp(\int_{0}^{\tau} B_1(u)du) \int_{0}^{\tau} \left[\exp(\int_{0}^{s} -B_1(u)du) B_2(s) \right] ds + C \]
B_1, B_2

\[\int_0^\tau B_1(s) ds = \int_0^\tau [(2\lambda - 1)k + 2\eta^2 (1 - 2\lambda)\alpha(s)] ds \]

\[I_2 = \int_0^\tau \left[\exp \left(\int_0^s -B_1(u) du \right) B_2(s) \right] ds \]
\[\beta(t) = \frac{k\theta}{\eta^2} \left(1 + \sqrt{1 - \gamma}\right) \frac{\exp\left(\frac{2k}{\sqrt{1-\gamma}}(T-t)\right)-1}{1+[1-\frac{2}{\sqrt{1-\gamma}}]\exp\left(\frac{2k}{\sqrt{1-\gamma}}(T-t)\right)} \]
Solving g

$g_t = g \left(-k\beta\theta - \frac{1}{2}\eta^2\beta^2 - \eta^2\alpha + \frac{\lambda}{\eta^2}k^2\theta^2 + \lambda\eta^2\beta^2 + 2\lambda k\beta\theta \right)$

With α and β solved, we are now ready to solve g_t.

$\frac{g_t}{g} = G(t)$

$\frac{d}{ds}(\log g_t) = \frac{g_t}{g} = G$

$\log g_t = \int G ds + C$

$g_t = C \exp(\int G dt) = \exp \left(- \int_0^T G ds \right) \exp \left(\int_0^t G ds \right)$

$g_t = \exp \left(- \int_t^T G ds \right)$

62
Computing the Optimal Position

\[h(t)^* = -\frac{G_V(k(\theta-x_t)) + G_{Vx}\eta^2}{G_{VV}\eta^2} \]

\[= -\frac{\gamma V^{\gamma-1} f(k(\theta-x_t)) + \gamma V^{\gamma-1} f_x\eta^2}{\gamma(\gamma-1)V^{\gamma-2}f\eta^2} \]

\[= -\frac{V f(k(\theta-x_t)) + V f_x\eta^2}{(\gamma-1)f\eta^2} \]

\[= -\frac{V}{(\gamma-1)\eta^2} \left[f(k(\theta-x_t)) + f_x\eta^2 \right] \]

\[= \frac{V}{(1-\gamma)\eta^2} \left[k(\theta - x_t) + \eta^2(\beta + 2\alpha x) \right] \]

\[= \frac{V}{(1-\gamma)} \left[-\frac{k}{\eta^2} (x_t - \theta) + 2\alpha x + \beta \right] \]
The Optimal Position

\[h(t)^* = \frac{V_t}{(1-\gamma)} \left[-\frac{k}{\eta^2} (x_t - \theta) + 2\alpha(t)x_t + \beta(t) \right] \]

\[h(t)^* \sim -\frac{k}{\eta^2} (x_t - \theta) \]
The portfolio increases from $1000 to $4625 in one year.
Parameter Estimation

- Can be done using Maximum Likelihood.
- Evaluation of parameter sensitivity can be done by Monte Carlo simulation.
- In real trading, it is better to be conservative about the parameters.
 - Better underestimate the mean-reverting speed
 - Better overestimate the noise
- To account for parameter regime changes, we can use:
 - a hidden Markov chain model
 - moving calibration window
Trend Following Trading
Two-State Markov Model

\[dS_r = S_r [\mu(\alpha_r)dr + \sigma dB_r] \]

\[\alpha_r = 0 \quad \text{DOWN TREND} \]

\[\alpha_r = 1 \quad \text{UP TREND} \]
Buying and Selling Decisions

\[t \leq \tau_1^0 \leq \nu_1^0 \leq \tau_2^0 \leq \nu_2^0 \leq \cdots \leq \tau_n^0 \leq \nu_n^0 \leq \cdots \leq T \]

\[
J_i(S, \alpha, t, \Lambda_i) = \begin{cases}
E_t \left\{ \log \left(e^{\rho(t_1 - t)} \prod_{n=1}^{\infty} e^{\rho(t_{n+1} - v_n)} \frac{S_{v_n}}{S_{\tau_n}} \left[\frac{1 - K_s}{1 + K_b} \right]^{I(\tau_n < T)} \right) \right\}, & \text{if } i = 0, \\
E_t \left\{ \log \left(\left[\frac{S_{v_1}}{S} e^{\rho(t_2 - v_1)} (1 - K_s) \right] \prod_{n=2}^{\infty} e^{\rho(t_{n+1} - v_n)} \frac{S_{v_n}}{S_{\tau_n}} \left[\frac{1 - K_s}{1 + K_b} \right]^{I(\tau_n < T)} \right) \right\}, & \text{if } i = 1.
\end{cases}
\]
Optimal Trend Following Strategy
Trading SSE 2001 – 2011