Portfolio Optimization & Risk Management
Speaker Profile

- Dr. Haksun Li
- CEO, Numerical Method Inc.
- (Ex-)Adjunct Professors, Industry Fellow, Advisor, Consultant with the National University of Singapore, Nanyang Technological University, Fudan University, the Hong Kong University of Science and Technology.
- Quantitative Trader/Analyst, BNPP, UBS
- PhD, Computer Sci, University of Michigan Ann Arbor
- M.S., Financial Mathematics, University of Chicago
- B.S., Mathematics, University of Chicago
References

Portfolio Optimization
Notations

- $r = (r_1, ..., r_n)'$: a *random* vector of returns, either for a single asset over n periods, or a basket of n assets
- Q : the covariance matrix of the returns
- $x = (x_1, ..., x_n)'$: the weightings given to each holding period, or to each asset in the basket
Portfolio Statistics

- Mean of portfolio
 \[\mu(x) = x' E(r) \]

- Variance of portfolio
 \[\sigma^2(x) = x' Q x \]
Sharpe Ratio

\[\text{sr}(x) = \frac{\mu(x) - r_f}{\sigma^2(x)} = \frac{x' E(r) - r_f}{x' Q x} \]

- \(r_f \): a benchmark return, e.g., risk-free rate
- In general, we prefer
 - a bigger excess return
 - a smaller risk (uncertainty)
Sharpe Ratio Limitations

- Sharpe ratio does not differentiate between winning and losing trades, essentially ignoring their likelihoods (odds).
- Sharpe ratio does not consider, essentially ignoring, all higher moments of a return distribution except the first two, the mean and variance.
Sharpe’s Choice

- Both A and B have the same mean.
- A has a smaller variance.
- Sharpe will always chooses a portfolio of the smallest variance among all those having the same mean.
 - Hence A is preferred to B by Sharpe.
Avoid Downsides and Upsides

- Sharpe chooses the smallest variance portfolio to reduce the chance of having extreme losses.
- Yet, for a Normally distributed return, the extreme gains are as likely as the extreme losses.
- Ignoring the downsides will inevitably ignore the potential for upsides as well.
Potential for Gains

- Suppose we rank A and B by their potential for gains, we would choose B over A.
- Shall we choose the portfolio with the biggest variance then?
 - It is very counter intuitive.
Example 1: A or B?
Example 1: $L = 3$

- Suppose the loss threshold is 3.
- Pictorially, we see that B has more mass to the right of 3 than that of A.
 - B: 43% of mass; A: 37%.
- We compare the likelihood of winning to losing.
 - B: 0.77; A: 0.59.
- We therefore prefer B to A.
Example 1: \(L = 1 \)

- Suppose the loss threshold is 1.
- \(A \) has more mass to the right of \(L \) than that of \(B \).
- We compare the likelihood of winning to losing.
 - \(A: 1.71; B: 1.31 \).
- We therefore prefer \(A \) to \(B \).
Example 2
Example 2: Winning Ratio

- It is evident from the example(s) that, when choosing a portfolio, the likelihoods/odds/chances/potentials for upside and downside are important.

- Winning ratio \(\frac{W_A}{W_B} \):
 - 2\(\sigma\) gain: 1.8
 - 3\(\sigma\) gain: 0.85
 - 4\(\sigma\) gain: 35
Example 2: Losing Ratio

Losing ratio $\frac{L_A}{L_B}$:

- 1σ loss: 1.4
- 2σ loss: 0.7
- 3σ loss : 80
- 4σ loss : 100,000!!!
Higher Moments Are Important

- Both large gains and losses in example 2 are produced by moments of order 5 and higher.
 - They even shadow the effects of skew and kurtosis.
 - Example 2 has the same mean and variance for both distributions.
- Because Sharpe Ratio ignores all moments from order 3 and bigger, it treats all these very different distributions the same.
How Many Moments Are Needed?
Distribution A

- Combining 3 Normal distributions
 - $N(-5, 0.5)$
 - $N(0, 6.5)$
 - $N(5, 0.5)$
- Weights:
 - 25%
 - 50%
 - 25%
Moments of A

- Same mean and variance as distribution B.
- Symmetric distribution implies all odd moments (3^{rd}, 5^{th}, etc.) are 0.
- Kurtosis = 2.65 (smaller than the 3 of Normal)
 - Does smaller Kurtosis imply smaller risk?
- 6^{th} moment: 0.2% different from Normal
- 8^{th} moment: 24% different from Normal
- 10^{th} moment: 55% bigger than Normal
Performance Measure Requirements

- Take into account the odds of winning and losing.
- Take into account the sizes of winning and losing.
- Take into account of (all) the moments of a return distribution.
Loss Threshold

- Clearly, the definition, hence likelihoods, of winning and losing depends on how we define loss.
- Suppose \(L = \text{Loss Threshold} \),
 - for return < \(L \), we consider it a loss
 - for return > \(L \), we consider it a gain
An Attempt

- To account for
 - the odds of winning and losing
 - the sizes of winning and losing

- We consider

\[\Omega = \frac{E(r|r>L) \times P(r>L)}{E(r|r\leq L) \times P(r\leq L)} \]

\[\Omega = \frac{E(r|r>L)(1-F(L))}{E(r|r\leq L)F(L)} \]
First Attempt

Probability

Likelihood of Gain = (1 - F(L))

Expected Loss Given Loss = 1

Expected Gain Given Gain = g

Likelihood of Loss = F(L)
First Attempt Inadequacy

- Why F(L)?
- Not using the information from the entire distribution.
 - hence ignoring higher moments
Another Attempt

Probability

Likelihood of Gain = (1 - F(g))

Expected Loss Given Loss = 1

Likelihood of Loss = F(l)

Expected Gain Given Gain = g
Yet Another Attempt
Omega Definition

- \(\Omega \) takes the concept to the limit.
- \(\Omega \) uses the whole distribution.
- \(\Omega \) definition:
 - \(\Omega = \frac{ABC}{ALD} \)
 - \(\Omega = \frac{\int_{L}^{b=\max\{r\}}[1-F(r)]dr}{\int_{a=\min\{r\}}^{L} F(r)dr} \)
Intuitions

- Omega is a ratio of winning size weighted by probabilities to losing size weighted by probabilities.
- Omega considers size and odds of winning and losing trades.
- Omega considers all moments because the definition incorporates the whole distribution.
Omega Advantages

- There is no parameter (estimation).
- There is no need to estimate (higher) moments.
- Work with all kinds of distributions.
- Use a function (of Loss Threshold) to measure performance rather than a single number (as in Sharpe Ratio).
- It is as smooth as the return distribution.
- It is monotonic decreasing.
Omega Example
Affine Invariant

- $\varphi: r \rightarrow Ar + B$, iff $\hat{\Omega}(\varphi(L)) = \Omega(L)$
- $L \rightarrow AL + B$
- We may transform the returns distribution using any invertible transformation before calculating the Gamma measure.
- The transformation can be thought of as some sort of utility function, modifying the mean, variance, higher moments, and the distribution in general.
Numerator Integral (1)

\[
\int_{L}^{b} d \left[x (1 - F(x)) \right]
\]

\[
= \left[x (1 - F(x)) \right]_{L}^{b}
\]

\[
= b (1 - F(b)) - L (1 - F(L))
\]

\[
= -L (1 - F(L))
\]
Numerator Integral (2)

\[\int_{L}^{b} d[x(1 - F(x))] \]

\[= \int_{L}^{b} (1 - F(x))dx + \int_{L}^{b} xd(1 - F(x)) \]

\[= \int_{L}^{b} (1 - F(x))dx - \int_{L}^{b} xdF(x) \]
Numerator Integral (3)

\[-L(1 - F(L)) = \int_L^b (1 - F(x))\,dx - \int_L^b x\,dF(x) \]

\[\int_L^b (1 - F(x))\,dx = -L(1 - F(L)) + \int_L^b x\,dF(x) \]

\[= \int_L^b (x - L)\,f(x)\,dx \]

\[= \int_a^b \max(x - L, 0)\,f(x)\,dx \]

\[= E[\max(x - L, 0)] \]

undiscounted call option price
Denominator Integral (1)

\[\int_a^L d[xF(x)] \]
\[= [xF(x)]_a^L \]
\[= LF(L) - a(F(a)) \]
\[= LF(L) \]
Denominator Integral (2)

- $\int_{a}^{L} d[xF(x)]$
- $= \int_{a}^{L} F(x) \, dx + \int_{a}^{L} x \, dF(x)$
Denominator Integral (3)

- \(LF(L) = \int_{a}^{L} F(x)dx + \int_{a}^{L} x dF(x) \)
- \(\int_{a}^{L} F(x)dx = LF(L) - \int_{a}^{L} x dF(x) \)
- \(= \int_{a}^{L} (L - x)f(x)dx \)
- \(= \int_{a}^{b} \max(L - x, 0)f(x)dx \)
- \(= E[\max(L - x, 0)] \)

undiscounted put option price
Another Look at Omega

\[\Omega = \frac{\int_{L}^{b=\max\{r\}} [1 - F(r)] dr}{\int_{a=\min\{r\}}^{L} F(r) dr} \]

\[= \frac{E[\max(x-L,0)]}{E[\max(L-x,0)]} \]

\[= \frac{e^{-r} f E[\max(x-L,0)]}{e^{-r} f E[\max(L-x,0)]} \]

\[= \frac{C(L)}{P(L)} \]
Options Intuition

- Numerator: the cost of acquiring the return above L
- Denominator: the cost of protecting the return below L
- Risk measure: the put option price as the cost of protection is a much more general measure than variance
Can We Do Better?

- Excess return in Sharpe Ratio is more intuitive than $C(L)$ in Omega.
- Put options price as a risk measure in Omega is better than variance in Sharpe Ratio.
Sharpe-Omega

- $\Omega_S = \frac{\bar{r} - L}{P(L)}$
- In this definition, we combine the advantages in both Sharpe Ratio and Omega.
 - meaning of excess return is clear
 - risk is bettered measured
- Sharpe-Omega is more intuitive.
- Ω_S ranks the portfolios in exactly the same way as Ω.
Sharpe-Omega and Moments

- It is important to note that the numerator relates only to the first moment (the mean) of the returns distribution.
- It is the denominator that take into account the variance and all the higher moments, hence the whole distribution.
Sharpe-Omega and Variance

- Suppose $\bar{r} > L$. $\Omega_S > 0$.
 - The bigger the volatility, the higher the put price, the bigger the risk, the smaller the Ω_S, the less attractive the investment.
 - We want smaller volatility to be more certain about the gains.

- Suppose $\bar{r} < L$. $\Omega_S < 0$.
 - The bigger the volatility, the higher the put price, the bigger the Ω_S, the more attractive the investment.
 - Bigger volatility increases the odd of earning a return above L.
In general, a Sharpe optimized portfolio is different from an Omega optimized portfolio.

How different?
Optimization for Sharpe

\[
\begin{align*}
\min_x & \quad x' \Sigma x \\
\text{subject to} & \quad \sum_{i=1}^{n} x_i E(r_i) \geq \rho \\
& \quad \sum_{i=1}^{n} x_i = 1 \\
& \quad x_i^l \leq x_i \leq 1
\end{align*}
\]

Minimum holding: \(x^l = (x_1^l, \ldots, x_n^l)' \)
Optimization s.t. Constraints

\[\max_x \left\{ \bar{r}' x - \lambda_1 x' \Sigma x - \lambda_2 \sum_{i=1}^{n} m_i |x_i - w_{0i}|^2 \right\} \]

\[\sum_{i=1}^{n} x = 0, \text{ self financing} \]

\[x_i = 0, \text{ black list} \]

Many more...

```
maximize \ c^T x
subject to \ A x = b
x \in \mathcal{D}^n,
```
Optimization for Omega

\[
\begin{aligned}
\max_x \Omega_S(x) \\
\Sigma_i^n x_i E(r_i) \geq \rho \\
\Sigma_i^n x_i = 1 \\
x_i^l \leq x_i \leq 1
\end{aligned}
\]

Minimum holding: \(x^l = (x_1^l, ..., x_n^l)'\)
Optimization Methods

- Nonlinear Programming
 - Penalty Method
- Global Optimization
 - Differential Evolution
 - Threshold Accepting algorithm (Avouyi-Dovi et al.)
 - Tabu search (Glover 2005)
 - MCS algorithm (Huyer and Neumaier 1999)
 - Simulated Annealing
 - Genetic Algorithm
- Integer Programming (Mausser et al.)
3 Assets Example

- $x_1 + x_2 + x_3 = 1$
- $R_i = x_1 r_{1i} + x_2 r_{2i} + x_3 r_{3i}$
- $= x_1 r_{1i} + x_2 r_{2i} + (1 - x_1 - x_2) r_{3i}$
Penalty Method

- $F(x_1, x_2) = \Omega(R_i) + \rho\{[\min(0, x_1)]^2 + [\min(0, x_2)]^2 + [\min(0, 1 - x_1 - x_2)]^2\}$
- Can apply Nelder-Mead, a Simplex algorithm that takes initial guesses.
- F needs not be differentiable.
- Can do random-restart to search for global optimum.
Threshold Accepting Algorithm

- It is a local search algorithm.
 - It explores the potential candidates around the current best solution.
- It “escapes” the local minimum by allowing choosing a lower than current best solution.
 - This is in very sharp contrast to a hilling climbing algorithm.
Objective

- Objective function
 - \(h: X \to R, X \in R^n \)
- Optimum
 - \(h_{\text{opt}} = \max_{x \in X} h(x) \)
Initialization

- Initialize n (number of iterations) and $step$.
- Initialize sequence of thresholds th_k, $k = 1, \ldots, step$
- Starting point: $x_0 \in X$
Thresholds

- Simulate a set of portfolios.
- Compute the distances between the portfolios.
- Order the distances from the biggest to the smallest.
- Choose the first \textit{step} number of them as thresholds.
Search

- $x_{i+1} \in N_{x_i}$ (neighbour of x_i)
- Threshold: $\Delta h = h(x_{i+1}) - h(x_i)$
- Accepting: If $\Delta h > th_k$ set $x_{i+1} = x_i$
- Continue until we finish the last (smallest) threshold.
 - $h(x_i) \approx h_{opt}$
- Evaluating h by Monte Carlo simulation.
Differential Evolution

- DE is a simple and yet very powerful global optimization method.
- It is ideal for multidimensional, multimodal functions, i.e. very hard problems.
- It works with hard-to-model constraints, e.g., max drawdown.
- DE is implemented in SuanShu.
 - \[z = a + F(b - c) \] with a certain probability
- http://numericalmethod.com/blog/2011/05/31/strategy-optimization/
Risk Management
Risks

- Financial theories say:
 - the most important single source of profit is risk.
 - profit \propto risk.
- I personally do not agree.
What Are Some Risks? (1)

- **Bonds:**
 - duration (sensitivity to interest rate)
 - convexity
 - term structure models

- **Credit:**
 - rating
 - default models
What Are Some Risks? (2)

- **Stocks**
 - volatility
 - correlations
 - beta

- **Derivatives**
 - delta
 - gamma
 - vega
What Are Some Risks? (3)

- FX
 - volatility
 - target zones
 - spreads
 - term structure models of related currencies
Other Risks?

- Too many to enumerate...
 - natural disasters, e.g., earthquake
 - war
 - politics
 - operational risk
 - regulatory risk
 - wide spread rumors
 - alien attack!!!
- Practically infinitely many of them...
VaR Definition

- Given a loss distribution, F, quintile $1 > q \geq 0.95$,
- $\text{VaR}_q = F^{-1}(q)$
Expected Shortfall

- Suppose we hit a big loss, what is its expected size?
- \(ES_q = E[X|X > VaR_q] \)
VaR in Layman Term

- VaR is the maximum loss which can occur with certain confidence over a holding period (of \(n \) days).
- Suppose a daily VaR is stated as $1,000,000 to a 95% level of confidence.
- There is only a 5% chance that the loss the next day will exceed $1,000,000.
Why VaR?

- Is it a true way to measure risk?
 - NO!
- Is it a universal measure accounting for most risks?
 - NO!
- Is it a good measure?
 - NO!
- Only because the industry and regulators have adopted it.
 - It is a widely accepted standard.
VaR Computations

- Historical Simulation
- Variance-CoVariance
- Monte Carlo simulation
Historical Simulations

- Take a historical returns time series as the returns distribution.
- Compute the loss distribution from the historical returns distribution.
Historical Simulations Advantages

- Simplest
- Non-parametric, no assumption of distributions, no possibility of estimation error
Historical Simulations Dis-Advantages

- As all historical returns carry equal weights, it runs the risk of over-/under-estimate the recent trends.
- Sample period may not be representative of the risks.
- History may not repeat itself.
- Cannot accommodate for new risks.
- Cannot incorporate subjective information.
Variance-CoVariance

- Assume all returns distributions are Normal.
- Estimate asset variances and covariances from historical data.
- Compute portfolio variance.
 \[\sigma_P^2 = \sum_{i,j} \rho_{ij} \omega_i \omega_j \sigma_i \sigma_j \]
Variance-CoVariance Example

- 95% confidence level (1.645 stdev from mean)
- Nominal = $10 million
- Price = $100
- Average return = 7.35%
- Standard deviation = 1.99%
- The VaR at 95% confidence level = 1.645 x 0.0199 = 0.032736
- The VaR of the portfolio = 0.032736 x 10 million = $327,360.
Variance-CoVariance Advantages

- Widely accepted approach in banks and regulations.
- Simple to apply; straightforward to explain.
- Datasets immediately available
 - very easy to estimate from historical data
 - free data from RiskMetrics
- Can do scenario tests by twisting the parameters.
 - sensitivity analysis of parameters
 - give more weightings to more recent data
Variance-CoVariance Disadvantages

- Assumption of Normal distribution for returns, which is known to be not true.
- Does not take into account of fat tails.
- Does not work with non-linear assets in portfolio, e.g., options.
Monte Carlo Simulation

- You create your own returns distributions.
 - historical data
 - implied data
 - economic scenarios
- Simulate the joint distributions many times.
- Compute the empirical returns distribution of the portfolio.
- Compute the (e.g., 1%, 5%) quantile.
Monte Carlo Simulation Advantages

- Does not assume any specific models, or forms of distributions.
- Can incorporate any information, even subjective views.
- Can do scenario tests by twisting the parameters.
 - sensitivity analysis of parameters
 - give more weightings to more recent data
- Can work with non-linear assets, e.g., options.
- Can track path-dependence.
Monte Carlo Simulation Disadvantages

- **Slow.**
 - To increase the precision by a factor of 10, we must make 100 times more simulations.

- Various variance reduction techniques apply.
 - antithetic variates
 - control variates
 - importance sampling
 - stratified sampling

- Difficult to build a (high) multi-dimensional joint distribution from data.
100-Year Market Crash

- How do we incorporate rare events into our returns distributions, hence enhanced risk management?
- Statistics works very well when you have a large amount of data.
- How do we analyze for (very) small samples?
Fat Tails
A QQ plots display the quintiles of the sample data against those of a standard normal distribution.
This is the first diagnostic tool in determining whether the data have fat tails.
QQ Plot
Asymptotic Properties

- The (normalized) mean of a sample mean of a large population is normally distributed, *regardless of the generating distribution*.
- What about the sample maximum?
Let X_1, \ldots, X_n be i.i.d. with distribution $F(x)$.

Let the sample maxima be $M_n = X_{(n)} = \max_i X_i$.

$$P(M_n \leq x) = P(X_1 \leq x, \ldots, X_n \leq x)$$

$$= \prod_{i=1}^{n} P(X_i \leq x) = F^n(x)$$

What is $\lim_{n \to \infty} F^n(x)$?
Suppose we can scale the maximums \(\{c_n\} \) and change the locations (means) \(\{d_n\} \).

There may exist non-negative sequences of these such that

\[
\begin{align*}
& c_n^{-1}(M_n - d_n) \to Y, \text{ } Y \text{ is not a point} \\
& H(x) = \lim_{n \to \infty} P(c_n^{-1}(M_n - d_n) \leq x) \\
& = \lim_{n \to \infty} P(M_n \leq c_n x + d_n) \\
& = \lim_{n \to \infty} F^n(c_n x + d_n)
\end{align*}
\]
Example 1 (Gumbel)

- $F(x) = 1 - e^{-\lambda x}, x > 0$.
- Let $c_n = \lambda^{-1}, d_n = \lambda^{-1} \log n$.
- $P(\lambda(M_n - \lambda^{-1} \log n) \leq x)$
- $= P(M_n \leq \lambda^{-1}(x + \log n))$
- $= (1 - e^{-(x+\log n)})^n$
- $= \left(1 - \frac{e^{-x}}{n}\right)^n$
- $\rightarrow e^{-e^{-x}} = e^{-e^{-x}} 1_{\{x>0\}}$
Example 2 (Fre´chet)

\[F(x) = 1 - \frac{\theta^\alpha}{(\theta+x)^\alpha} = 1 - \frac{1}{(1+\frac{x}{\theta})^\alpha}, \ x > 0. \]

Let \(c_n = \theta n^{\overline{\alpha}}, d_n = 0. \)

\[P(\vartheta^{-1} n^{-1/\alpha} M_n \leq x) \]
\[= P(M_n \leq \vartheta n^{1/\alpha} x) \]
\[= \left(1 - \frac{1}{(1+n^{1/\alpha} x)^\alpha}\right)^n \sim \left(1 - \frac{1}{(n^{1/\alpha} x)^\alpha}\right)^n \]
\[= \left(1 - \frac{x^{-\alpha}}{n}\right)^n \]
\[\rightarrow e^{-x^{-\alpha}} 1_{\{x>0\}} \]
Fisher-Tippett Theorem

- It turns out that H can take only one of the three possible forms.
- Frechet
 - $\Phi_\alpha(x) = e^{-x^{-\alpha}} 1_{\{x>0\}}$
- Gumbel
 - $\Lambda(x) = e^{-e^{-x}} 1_{\{x>0\}}$
- Weibull
 - $\Psi_\alpha(x) = e^{-(x)^\alpha} 1_{\{x<0\}}$
Maximum Domain of Attraction

- Frechet
 - Fat tails
 - E.g., Pareto, Cauchy, student t,

- Gumbel
 - The tail decay exponentially with all finite moments.
 - E.g., normal, log normal, gamma, exponential

- Weibull
 - Thin tailed distributions with finite upper endpoints, hence bounded maximums.
 - E.g., uniform distribution
Why Fre´chet?

- Since we care about fat tailed distributions for financial asset returns, we rule out Gumbel.
- Since financial asset returns are theoretically unbounded, we rule out Weibull.
- So, we are left with Fre´chet, the most common MDA used in modeling extreme risk.
Frechet Shape Parameter

- α is the shape parameter.
- Moments of order r greater than α are infinite.
- Moments of order r smaller than α are finite.
 - Student t distribution has $\alpha \geq 2$. So its mean and variance are well defined.
Frechet MDA Theorem

- \(F \in \text{MDA} H, H \) Frechet if and only if
- the complement cdf \(\bar{F}(x) = x^{-\alpha}L(x) \)
- \(L \) is slowly varying function
 - \(\lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1, \; t > 0 \)
- This restricts the maximum domain of attraction of the Frechet distribution quite a lot, it consists only of what we would call heavy tailed distributions.
Generalized Extreme Value Distribution (GEV)

- \(H_\tau(x) = e^{-\frac{1}{\tau}(1+\tau x)} \), \(\tau \neq 0 \)
- \(H_\tau(x) = e^{-e^{-x}} \), \(\tau = 0 \)
- \(\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{-n} = e^{-x} \)
- tail index \(\tau = \frac{1}{\alpha} \)
- Fre´chet: \(\tau > 0 \)
- Gumbel: \(\tau = 0 \)
- Weibull: \(\tau < 0 \)
Generalized Pareto Distribution

- \(G_\tau(x) = 1 - (1 + \tau x)^{-\frac{1}{\tau}} \)
- \(G_0(x) = 1 - e^{-x} \)
 - simply an exponential distribution
- Let \(Y = \beta X, \ X \sim G_\tau. \)
- \(G_{\tau,\beta} = 1 - \left(1 + \tau \frac{y}{\beta}\right)^{-\frac{1}{\tau}} \)
- \(G_{0,\beta} = 1 - e^{-\frac{y}{\beta}} \)
The Excess Function

- Let u be a tail cutoff threshold.
- The excess function is defined as:
 \[F_u(x) = 1 - \bar{F}_u(x) \]
 \[\bar{F}_u(x) = P(X - u > x | X > u) = \frac{P(X > u + x)}{P(X > u)} = \frac{\bar{F}(x + u)}{\bar{F}(u)} \]
Asymptotic Property of Excess Function

- Let $x_F = \inf\{x : F(x) = 1\}$.
- For each τ, $F \in \text{MDA}(H_\tau)$, if and only if
 \[
 \lim_{u \to x_F^-} \sup_{0 < x < x_F - u} |F_u(x) - G_{\tau,\beta(u)}(x)| = 0
 \]
- If $x_F = \infty$, we have
 \[
 \lim_{u \to \infty} \sup_x |F_u(x) - G_{\tau,\beta(u)}(x)| = 0
 \]
- Applications: to determine τ, u, etc.
Tail Index Estimation by Quantiles

- Hill, 1975
- Pickands, 1975
- Dekkers and DeHaan, 1990
Hill Estimator

\[\tau_{n,m}^H = \frac{1}{m-1} \sum_{i=1}^{m-1} (\ln X^*_i - \ln X^*_{n-m,n}) \]

- \(X^* \): the order statistics of observations
- \(m \): the number of observations in the (left) tail
- Mason (1982) shows that \(\tau_{n,m}^H \) is a consistent estimator, hence convergence to the true value.
- Pictet, Dacorogna, and Muller (1996) show that in finite samples the expectation of the Hill estimator is biased.
- In general, bigger (smaller) \(m \) gives more (less) biased estimator but smaller (bigger) variance.
POT Plot

percentage data left

[Graph showing POT Plot with multiple lines representing different datasets or measures against the percentage data left.]
Pickands Estimator

\[\tau_{n,m}^p = \frac{\ln(x_m^* - x_{2m}^*)}{\ln 2} \]
Dekkers and DeHaan Estimator

\[\tau_{n,m}^D = \tau_{n,m}^H + 1 - \frac{1}{2} \left(1 - \frac{\left(\tau_{n,m}^H \right)^2}{\tau_{n,m}^{H^2}} \right)^{-1} \]

\[\tau_{n,m}^{H^2} = \frac{1}{m-1} \sum_{i=1}^{m-1} (\ln X^*_i - \ln X^*_m)^2 \]
For a given probability \(q > F(u) \) the VaR estimate is calculated by inverting the excess function. We have:

\[
\text{VaR}_q = u + \frac{\hat{\beta}}{\hat{\tau}} \left(\left(\frac{n}{m} (1 - q) \right)^{-\hat{\tau}} - 1 \right)
\]

Confidence interval can be computed using profile likelihood.
ES using EVT

\[\hat{ES}_q = \frac{VaR_q}{1-\hat{\tau}} + \frac{\hat{\beta} - \hat{\tau}u}{1-\hat{\tau}} \]
VaR Comparison