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Stochastic Calculus 

3 



Brownian Motion 
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 Independence of increments. 
 𝑑𝑑 = 𝐵 𝑡 − 𝐵 𝑠  is independent of any history up to 𝑠. 

 Normality of increments. 
 𝑑𝑑 is normally distributed with mean 0 and variance 𝑡 − 𝑠. 

 Continuity of paths. 
 𝐵 𝑡  is a continuous function of 𝑡. 



Stochastic vs. Newtonian Calculus 
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 Newtonian calculus: when you zoom in a function 
enough, the little segment looks like a straight line, 
hence the approximation: 
 𝑑𝑑 = 𝑓̇𝑑𝑑 
 Derivative exists. 
 The function is differentiable. 

 Stochastic calculus: no matter how much you zoom in 
or how small 𝑑𝑑 is, the function still looks very zig-zag 
and random. It is nothing like a straight line. 
 For Brownian motion, however much you zoom in, how 

small the segment is, it still just looks very much like a 
Brownian motion. 

 The function is therefore no where differentiable. 



Examples 
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not a trend not mean reversion 



dBdB 
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 𝑑𝑑 2 = 𝑑𝑑𝑑𝑑 = 𝑑𝑑 

 ∫ 𝑑𝐵𝑡 2𝑡
0 ≈ ∑ 𝑍𝑛,𝑖

2𝑛
𝑖=1  

 𝑍𝑛,𝑖 is of 𝑁 0, 𝑡
𝑛

  for all 𝑖. 

 ∫ 𝑑𝐵𝑡 2𝑡
0 ≈ sum of variances of 𝑍𝑛,𝑖 ≈ 𝑡 

 Making 𝑛 → ∞ or 𝑑𝑑 → 0, we have  
 ∫ 𝑑𝐵𝑡 2𝑡

0 = 𝑡, convergence in probability 
 𝑑𝐵𝑡 2 = 𝑑𝑑, in differential form 

 𝑑𝑑𝑑𝑡 = 0 
 𝑑𝑡𝑑𝑑 = 0 



Asset Price Model 

8 

 Want to model asset price movement. 
 Change in price = 𝑑𝑑 
 Change in price is not too meaningful as $1 change in a 

penny stock is more significant than $1 change in GOOG. 

 Return = 𝑑𝑑
𝑆

 

 Model return using two parts. 
 Deterministic: 𝜇𝑑𝑑, the predictable part. E.g., fixed deposit 

interest rate. 
 Random/stochastic: 𝜎𝑑𝑑, where 𝜎 is the volatility of returns 

and 𝑑𝐵 is a sample from a probability distribution, e.g., 
Normal. 



Geometric Brownian Motion 
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 Asset price: 𝑑𝑑
𝑆

= 𝜇𝜇𝜇 + 𝜎𝜎𝐵 
 𝑑𝐵: normally distributed 
 E 𝑑𝐵 = 0 
 Variance = 𝑑𝑑. It is intuitive that 𝑑𝐵 should be scaled by 𝑑𝑑 

otherwise the (random) return drawn would be too big 
from any Normal distribution for 𝑑𝑑 → 0. 

 𝑑𝐵 = 𝜙 𝑑𝑑, where 𝜙 is a standard Normal distribution. 
 Reasonably good model for stocks and indices. 
 Real data have more big rises and falls than this model 

predicts, i.e., extreme events. 



GBM Properties 
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 Markov property: the distribution of the next price 
S + 𝑑𝑑 depend only on the current price 𝑆. 

 E 𝑑𝑆 = E 𝜇𝑆𝑑𝑑 + 𝜎𝑆𝑑𝐵  
 = E 𝜇𝜇𝜇𝜇 + E 𝜎𝜎𝜎𝐵  
 = 𝜇𝜇𝜇𝜇 + 𝜎𝜎 E 𝑑𝐵  
 = 𝜇𝜇𝜇𝜇 

 Var 𝑑𝑑 = E 𝑑𝑑2 − E 𝑑𝑑 2 = 𝜎2𝑆2𝑑𝑑 
 𝑑𝐵𝑑𝑑 = 0 
 𝑑𝑑𝑑𝑑 = 0 
 𝑑𝐵𝑑𝐵 = 𝑑𝑑 



Stochastic Differential Equation 
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 Both 𝜇 and 𝜎 can be as simple as constants, deterministic 
functions of 𝑡 and 𝑆, or as complicated as stochastic functions 
adapted to the filtration generated by 𝑆𝑡 . 

 𝑑𝑆𝑡 = 𝜇𝜇𝜇 + 𝜎𝜎𝐵𝑡 
 𝑑𝑆𝑡 = 𝜇 𝑡, 𝑆𝑡 𝑑𝑑 + 𝜎 𝑡, 𝑆𝑡 𝑑𝐵𝑡 



Univariate Ito’s Lemma 
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 Assume 
 𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑑 + 𝜎𝑡𝑑𝐵𝑡 
 𝑓 𝑡,𝑋𝑡  is twice differentiable of two real variables 

 We have 

 𝑑𝑑 𝑡,𝑋𝑡 =  𝜕𝜕
𝜕𝜕

+ 𝜇𝑡
𝜕𝜕
𝜕𝜕

+ 𝜎𝑡2

2
𝜕2𝑓
𝜕𝑥2

𝑑𝑑 + 𝜎𝑡
𝜕𝜕
𝜕𝜕
𝑑𝐵𝑡 



“Proof” 
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 Taylor series 
 𝑑𝑓 𝑡,𝑋  
 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋𝑑𝑋 + 1

2
𝑓𝑡𝑡𝑑𝑑𝑑𝑑 + 𝑓𝑡𝑋𝑑𝑑𝑑𝑋 + 𝑓𝑋𝑋𝑑𝑋𝑑𝑡 + 𝑓𝑋𝑋𝑑𝑑𝑑𝑋  

 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋𝑑𝑑 + 1
2
𝑓𝑋𝑋𝑑𝑑𝑑𝑑 

 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝐵 + 1
2
𝑓𝑋𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝑑 2 

 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝑑 + 1
2
𝑓𝑋𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝑑 2 

 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝑑 + 1
2
𝑓𝑋𝑋 𝜇2𝑑𝑑2 + 𝜎2𝑑𝐵2 + 2𝜇𝑑𝑑𝜎𝑑𝑑  

 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝑑 + 1
2
𝑓𝑋𝑋𝜎2𝑑𝑑2 

 = 𝑓𝑡𝑑𝑑 + 𝑓𝑋 𝜇𝑑𝑑 + 𝜎𝑑𝑑 + 1
2
𝑓𝑋𝑋𝜎2𝑑𝑑 

 = 𝑓𝑡 + 𝜇𝑓𝑋 + 1
2
𝜎2𝑓𝑋𝑋 𝑑𝑑 + 𝜎𝑓𝑋𝑑𝑑 



Log Example 
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 For G.B.M., 𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑑 + 𝜎𝑋𝑡𝑑𝑧𝑡 , 𝑑 log𝑋𝑡 =? 
 𝑓 𝑥 = log 𝑥  


𝜕𝑓
𝜕𝑡

= 0 


𝜕𝑓
𝜕𝑥

= 1
𝑥
 


𝜕2𝑓
𝜕𝑥2

= − 1
𝑥2

 

 𝑑 log𝑋𝑡 = 𝜇𝑋𝑡
1
𝑋𝑡

+ 𝜎𝑋𝑡 2

2
− 1
𝑋𝑡2

𝑑𝑑 + 𝜎𝑋𝑡
1
𝑋𝑡

𝑑𝐵𝑡 

 = 𝜇 − 𝜎2

2
𝑑𝑑 + 𝜎𝑑𝐵𝑡 



Exp Example 
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 𝑑𝑋𝑡 = 𝜇𝑑𝑑 + 𝜎𝑑𝑧𝑡 , 𝑑𝑒𝑋𝑡 =? 
 𝑓 𝑥 = 𝑒𝑥 


𝜕𝑓
𝜕𝑡

= 0 


𝜕𝑓
𝜕𝑥

= 𝑒𝑥 


𝜕2𝑓
𝜕𝑥2

= 𝑒𝑥 

 𝑑𝑒𝑋𝑡 = 𝜇𝑒𝑋𝑡 + 𝜎2

2
𝑒𝑋𝑡 𝑑𝑑 + 𝜎𝑒𝑋𝑡𝑑𝐵𝑡 

 = 𝑒𝑋𝑡 𝜇 + 𝜎2

2
𝑑𝑑 + 𝜎𝑑𝐵𝑡  


𝑑𝑒𝑋𝑡
𝑒𝑋𝑡

= 𝜇 + 𝜎2

2
𝑑𝑑 + 𝜎𝑑𝐵𝑡 



Stopping Time 
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 A stopping time is a random time that some event is 
known to have occurred. 

 Examples: 
 when a stock hits a target price 
 when you run out of money 
 when a moving average crossover occurs 

 When a stock has bottomed out is NOT a stopping 
time because you cannot tell when it has reached its 
minimum without future information. 
 



Optimal Trend Following Strategy 

17 



Asset Model 

18 

 Two state Markov model for a stock’s prices: BULL and 
BEAR. 

 𝑑𝑆𝑟 = 𝑆𝑟 𝜇𝛼𝑟𝑑𝑑 + 𝜎𝜎𝐵𝑟 , 𝑡 ≤ 𝑟 ≤ 𝑇 < ∞ 
 The trading period is between time 𝑡,𝑇 . 

 𝛼𝑟 = 1,2  are the two Markov states that indicates the 
BULL and BEAR markets. 
 𝜇1 > 0 
 𝜇2 < 0 

 𝑄 = −𝜆1 𝜆1
𝜆2 −𝜆2

, the generator matrix for the Markov 

chain. 



Generator Matrix 
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 From transition matrix to generator matrix: 
 𝑃 𝑡, 𝑡 + Δ𝑡 = 𝐼 + Δ𝑡𝑡 + 𝑜 Δ𝑡  

 We can estimate 𝑄 by estimating 𝑃. 
 𝑃 𝑡, 𝑠 = 𝑃 𝑡, 𝑡 + 𝑚Δ𝑡  

 ≈ 𝐼 + Δ𝑡𝑡 𝑚 = 𝐼 + 𝑠−𝑡
𝑚

𝑄
𝑚

= exp 𝑠 − 𝑡 𝑄  

 𝑃 𝑡, 𝑡 + Δ𝑡 = exp Δ𝑡𝑡  

 𝑃� 𝑡 ≈ exp Δ𝑡𝑄�  

 𝑄� ≈ 1
Δ𝑡

log𝑃� 𝑡  

 E.g., Δ𝑡 = 1
252

 



Optimal Stopping Times 
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t T 𝜏1 𝜈1 𝜏2 𝜈2 𝜏𝑛 𝜈𝑛 

𝑖 = 0,Λ0 = 𝜏1, 𝜈1, 𝜏2, 𝜈2,⋯  

𝑖 = 0,Λ0 = 𝜈1, 𝜏2, 𝜈2, 𝜏3,⋯  

BUY BUY BUY SELL SELL SELL 

no position, 
bank the $ 

no position, 
bank the $ 

no position, 
bank the $ LONG LONG LONG 



Parameters 
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 𝜌 ≥ 0, interest free rate 
 𝑆𝑡 = 𝑆, the initial stock price 
 𝑖 = 0,1 , the net position 
 𝐾𝑏, the transaction cost for BUYs in percentage 
 𝐾𝑠, the transaction cost for SELLs in percentage 

 



Expected Return (starting flat) 
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 When 𝑖 = 0, 
 E0,𝑡 𝑅𝑡 =

E𝑡 𝑒𝜌 𝜏1−𝑡 ∏ 𝑆𝜈𝑛
𝑆𝜏𝑛

1−𝐾𝑠
1+𝐾𝑏

𝐼 𝜏𝑛<𝑇
𝑒𝜌 𝜏𝑛+1−𝜐𝑛∞

𝑛=1  

 You are long between 𝜏𝑛 and 𝜈𝑛 and the return is 
determined by the price change discounted by the 
commissions. 

 You are flat between 𝜈𝑛 and 𝜏𝑛+1 and the money grows at 
the risk free rate. 



Expected Return (starting long) 
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 When 𝑖 = 1, 
 E1,𝑡 𝑅𝑡 =

E𝑡
𝑆𝜈1
𝑆
𝑒𝜌 𝜏2−𝜈1 1− 𝐾𝑠 ∏ 𝑆𝜈𝑛

𝑆𝜏𝑛

1−𝐾𝑠
1+𝐾𝑏

𝐼 𝜏𝑛<𝑇
𝑒𝜌 𝜏𝑛+1−𝜐𝑛∞

𝑛=2  

 You sell the long position at 𝜈1. 



Value Functions 

24 

 It is easier to work with the log of the returns. 

 J0 𝑆, 𝛼, 𝑡,Λ0 = E𝑡 𝜌 𝜏1 − 𝑡 + ∑ log 𝑆𝜈𝑛
𝑆𝜏𝑛

+ 𝐼 𝜏𝑛<𝑇 log 1−𝐾𝑠
1+𝐾𝑏

+ 𝜌 𝜏𝑛+1 − 𝜐𝑛∞
𝑛=1  

 J1 𝑆, 𝛼, 𝑡,Λ1 =

E𝑡 log
𝑆𝜈1
𝑆

+ 𝜌 𝜏2 − 𝜈1 + log 1 − 𝐾𝑠 + ∑ log 𝑆𝜈𝑛
𝑆𝜏𝑛

+ 𝐼 𝜏𝑛<𝑇 log 1−𝐾𝑠
1+𝐾𝑏

+ 𝜌 𝜏𝑛+1 − 𝜐𝑛∞
𝑛=2  



Conditional Probability of Bull Market 

25 

 𝑝𝑟 = 𝑃 𝛼𝑟 = 1 | 𝜎 𝑆𝑢 ∶ 0 ≤ 𝑢 ≤ 𝑟  
 𝑝𝑟 is therefore a random process driven by the same 

Brownian motion that drives 𝑆𝑢. 

 𝑑𝑝𝑟 = − 𝜆1 + 𝜆2 𝑝𝑟 + 𝜆2 𝑑𝑑 + 𝜇1−𝜇2 𝑝𝑟 1−𝑝𝑟
𝜎

𝑑𝐵𝑟� 

 𝑑𝐵𝑟� = 𝑑 log 𝑆𝑟 − 𝜇1−𝜇2 𝑝𝑟+𝜇2−𝜎2 2⁄ 𝑑𝑑
𝜎

 

 𝑝𝑡+1 = 𝑝𝑡 + 𝑔 𝑝𝑡 Δ𝑡 + 𝜇1−𝜇2 𝑝𝑡 1−𝑝𝑡
𝜎2

log 𝑆𝑡+1
𝑆𝑡

 

 𝑔 𝑝 = − 𝜆1 + 𝜆2 𝑝 + 𝜆2 −
𝜇1−𝜇2 𝑝 1−𝑝 𝜇1−𝜇2 𝑝+𝜇2−𝜎2 2⁄

𝜎2
 

 Make 𝑝𝑡+1 between 0 and 1 if it falls outside the bounds. 



Objective 
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 Find an optimal trading sequence (the stopping times) 
so that the value functions are maximized. 

 𝑉𝑖 𝑝, 𝑡 = supΛ𝑖 𝐽𝑖 𝑆, 𝑝, 𝑡,Λ𝑖  
 𝑉𝑖: the maximum amount of expected returns 



Realistic Expectation of Returns 

27 

 Lower bounds: 
 𝑉0 𝑝, 𝑡 ≥ 𝜌 𝑇 − 𝑡  
 𝑉1 𝑝, 𝑡 ≥ 𝜌 𝑇 − 𝑡 + log 1 − 𝐾𝑠  

 Upper bound: 

 𝑉𝑖 𝑝, 𝑡 ≤ 𝜇1 −
𝜎2

2
𝑇 − 𝑡  

 No trading zones: 

 One should never buy when 𝜌 ≥ 𝜇1 −
𝜎2

2
 



Principal of Optimality 

28 

 Given an optimal trading sequence, Λ𝑖, starting from 
time 𝑡, the truncated sequence will also be optimal for 
the same trading problem starting from any stopping 
times 𝜏𝑛 or 𝜐𝑛. 



Coupled Value Functions 

29 

 �
𝑉0 𝑝, 𝑡 = sup

𝜏1
𝐸𝑡 𝜌 𝜏1 − 𝑡 − log 1 + 𝐾𝑏 + 𝑉1 𝑝𝜏1 , 𝜏1

𝑉1 𝑝, 𝑡 = sup
𝜈1

𝐸𝑡 log
𝑆𝜈1
𝑆𝑡

+ log 1 − 𝐾𝑠 + 𝑉0 𝑝𝜈1 , 𝜈1
 



Hamilton-Jacobi-Bellman Equations 

30 

 � min −ℒ𝑉0 − 𝜌,𝑉0 − 𝑉1 + log 1 + 𝐾𝑏 = 0
min −ℒ𝑉1 − 𝑓 𝜌 ,𝑉1 − 𝑉0 − log 1− 𝐾𝑠 = 0 

 with terminal conditions: � 𝑉0 𝑝,𝑇 = 0
𝑉1 𝑝,𝑇 = log 1 − 𝐾𝑠

 

 ℒ = 𝜕𝑡 + 1
2

𝜇1−𝜇2 𝑝 1−𝑝
𝜎

2
𝜕𝑝𝑝 + − 𝜆1 + 𝜆2 𝑝 + 𝜆2 𝜕𝑝 



Penalty Formulation Approach 

31 

 The HJB formulation is equivalent to this system of 
PDEs. 

 �−ℒ𝑉0 − ℎ 𝜌 = 𝜉 𝑉1 − 𝑉0 − log 1 + 𝐾𝑏 +

−ℒ𝑉1 − 𝑓 𝜌 = 𝜉 𝑉0 − 𝑉1 + log 1 − 𝐾𝑠 +  

 𝜉 is a penalization factor such that 𝜉 → ∞. 
 ℎ 𝜌 = 𝜌 



Trading Boundaries 

32 

 𝐵𝐵 = 𝑝 ∈ 0,1 × [0,𝑇) ∶ 𝑝 ≥ 𝑝𝑏∗ 𝑡  
 𝑆𝑅 = 𝑝 ∈ 0,1 × [0,𝑇) ∶ 𝑝 ≤ 𝑝𝑠∗ 𝑡  



SP500 

33 



SSE 

34 



Problems 

35 

 The buy entry signals are always delayed (as expected). 
 The market therefore needs to bull long enough for 

the strategy to make profit. 
 If the bear market comes in too fast and hard, the exit 

entry may not come in soon enough. 
 A proper stoploss from max drawdown may help. 



Finding the Boundaries 
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 At any time 𝑡, we need to find 𝑝𝑏∗  and 𝑝𝑠∗ to determine 
whether we buy or sell or go flat. 

 𝑝𝑏∗ is determined by 
 𝑉1 𝑝𝑏∗ , 𝑡 − 𝑉0 𝑝𝑏∗ , 𝑡 = log 1 + 𝐾𝑏  

 𝑝𝑠∗ is determined by 
 𝑉1 𝑝𝑠∗, 𝑡 − 𝑉0 𝑝𝑠∗, 𝑡 = log 1 − 𝐾𝑠  

 Need to compute 𝑉0 𝑝, 𝑡  and 𝑉1 𝑝, 𝑡  for all 𝑝 and 𝑡. 
 Solve the coupled PDEs. 



Discretization of ℒ 

37 

 𝜌, 𝑡 ∈ 0,1 × [0,1) 
 𝜌, 𝑡  as 𝜌𝑗 , 𝑡𝑛  
 𝑗 ∈ 0,⋯ ,𝑀  

 𝜌0 = 0 
 𝜌𝑀 = 0 

 𝑛 ∈ 1,⋯ ,𝑁  
 𝑡1 = 0 
 𝑡𝑁 = 1− 


𝜕𝑉𝑖
𝜕𝑡

≈
𝑉𝑖,𝑗
𝑛+1−𝑉𝑖,𝑗

𝑛

∆𝑡
 



The Grid 

38 

𝑡1=0 𝑡1 𝑡𝑁=1 𝑡𝑛 
𝜌0=0 

𝜌𝑗 

𝜌𝑀=1 

𝑉𝑖 𝜌𝑗 , 𝑡𝑛  



Crank-Nicolson Scheme 
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
𝜕𝑉𝑖
𝜕𝜌

≈ 1
2

𝑉𝑖,𝑗+1
𝑛+1−𝑉𝑖,𝑗−1

𝑛+1

2∆𝜌
+

𝑉𝑖,𝑗+1
𝑛 −𝑉𝑖,𝑗−1

𝑛

2∆𝜌
 

 
 
 
 


𝜕2𝑉𝑖
𝜕𝜌2

≈ 1
2

𝑉𝑖,𝑗+1
𝑛+1−2𝑉𝑖,𝑗

𝑛+1+𝑉𝑖,𝑗−1
𝑛+1

∆𝜌 2 +
𝑉𝑖,𝑗+1
𝑛 −2𝑉𝑖,𝑗

𝑛+𝑉𝑖,𝑗−1
𝑛

∆𝜌 2  



RHS 
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 𝜉 𝑉1 − 𝑉0 − log 1 + 𝐾𝑏 + =

𝜉0,𝑗
𝑛+1 2⁄ 𝑉1,𝑗

𝑛+1−𝑉0,𝑗
𝑛+1

2
+

𝑉1,𝑗
𝑛 −𝑉0,𝑗

𝑛

2
− 𝑘𝑏  

 𝑘𝑏 = log 1 + 𝐾𝑏  

 𝜉 𝑉0 − 𝑉1 + log 1 − 𝐾𝑠 + =

𝜉1,𝑗
𝑛+1 2⁄ 𝑉0,𝑗

𝑛+1−𝑉1,𝑗
𝑛+1

2
+

𝑉0,𝑗
𝑛 −𝑉1,𝑗

𝑛

2
+ 𝑘𝑠  

 𝑘𝑠 = log 1 − 𝐾𝑠  



Penalty 
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 𝜉0,𝑗
𝑛+1 2⁄ = �𝜉∆𝑡,  if  

𝑉1,𝑗
𝑛+1−𝑉0,𝑗

𝑛+1

2
+

𝑉1,𝑗
𝑛 −𝑉0,𝑗

𝑛

2
− 𝑘𝑏 > 0

0, otherwise
 

 𝜉1,𝑗
𝑛+1 2⁄ = �𝜉∆𝑡, if

𝑉0,𝑗
𝑛+1−𝑉1,𝑗

𝑛+1

2
+

𝑉0,𝑗
𝑛 −𝑉1,𝑗

𝑛

2
+ 𝑘𝑠 > 0

0, otherwise
 



The Discretized PDEs 
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 𝑎1,𝑗𝑉0,𝑗+1
𝑛+1 + 𝑎0,𝑗𝑉0,𝑗

𝑛+1 + 𝑎−1,𝑗𝑉0,𝑗−1
𝑛+1 =

𝑐0,𝑗
𝑛 + 𝜉0,𝑗

𝑛+1 2⁄ 𝑉1,𝑗
𝑛+1−𝑉0,𝑗

𝑛+1

2
+

𝑉1,𝑗
𝑛 −𝑉0,𝑗

𝑛

2
− 𝑘𝑏  

 𝑎1,𝑗𝑉1,𝑗+1
𝑛+1 + 𝑎0,𝑗𝑉1,𝑗

𝑛+1 + 𝑎−1,𝑗𝑉1,𝑗−1
𝑛+1 =

𝑐1,𝑗
𝑛 + 𝜉1,𝑗

𝑛+1 2⁄ 𝑉0,𝑗
𝑛+1−𝑉1,𝑗

𝑛+1

2
+

𝑉0,𝑗
𝑛 −𝑉1,𝑗

𝑛

2
+ 𝑘𝑠  

 𝑗 ∈ 1,⋯ ,𝑀 − 1  
 𝑝 = 0, 𝑝 = 1 are excluded. 



The Coefficients 
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 𝑎−1,𝑗 = −1
2
𝜎𝑝2

∆𝑡
2∆𝑝2

+ 1
2
𝜇𝑝

∆𝑡
2∆𝑝

 

 𝑎0,𝑗 = 1 + 𝜎𝑝2
∆𝑡

2∆𝑝2
 

 𝑎1,𝑗 = −1
2
𝜎𝑝2

∆𝑡
2∆𝑝2

− 1
2
𝜇𝑝

∆𝑡
2∆𝑝

 

 𝑐0,𝑗
𝑛 = −𝑎1,𝑗𝑉0,𝑗+1

𝑛 + 2 − 𝑎0,𝑗 𝑉0,𝑗
𝑛 − 𝑎−1,𝑗𝑉0,𝑗−1

𝑛 +
ℎ 𝑗∆𝑝 ∆𝑡 

 𝑐1,𝑗
𝑛 = −𝑎1,𝑗𝑉1,𝑗+1

𝑛 + 2 − 𝑎0,𝑗 𝑉1,𝑗
𝑛 − 𝑎−1,𝑗𝑉1,𝑗−1

𝑛 +
𝑓 𝑗∆𝑝 ∆𝑡 
 



Boundary Conditions 
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 𝑗 = 0, 𝑝 = 0 
 𝑎0,0=1 
 𝑎1,0 = 0 
 𝑐0,0

𝑛 = 𝑉0,1
𝑛 + ℎ 0 ∆𝑡 

 𝑐1,0
𝑛 = 𝑉1,1

𝑛 + 𝑓 0 ∆𝑡 
 𝑗 = 𝑀, 𝑝 = 1 

 𝑎0,𝑀=1 
 𝑎−1,𝑀 = 0 
 𝑐0,𝑀

𝑛 = 𝑉0,𝑀−1
𝑛 + ℎ 1 ∆𝑡 

 𝑐1,𝑀
𝑛 = 𝑉1,𝑀−1

𝑛 + 𝑓 1 ∆𝑡 
 𝑛 = 0, 𝑡 = 0, for all 𝑗 ∈ 0,⋯ ,𝑀  

 𝑉0,𝑗 = 0 
 𝑉1,𝑗 = 𝑘𝑠 



System in Matrix Form 
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 �
𝐴𝑛𝑉0𝑛+1 = 𝑐0𝑛

𝐴𝑛𝑉1𝑛+1 = 𝑐1𝑛
 

 𝐴𝑛 =

𝑎0,0
𝑎−1,1
⋮
0
0

0
𝑎0,1
⋱
…
…

0
𝑎1,1
⋱

𝑎−1,𝑀−1
0

…
…
⋱

𝑎0,𝑀−1
0

0
0
⋮

𝑎1,𝑀−1
𝑎0,𝑀

 



Solving the System of Equations 

46 

 We already know the values of 𝑉00 and 𝑉10. 
 Starting from 𝑛 = 0, using 𝐴𝑛, we iteratively solve for 
𝑉0𝑛+1 and 𝑉1𝑛+1 until 𝑛 = 𝑀 − 1. 
 There are totally M systems of equations to solve. 

 The equations are linear in the unknowns 𝑉0,𝑗
𝑛+1 and 

𝑉1,𝑗
𝑛+1 if and only if 𝜉0,𝑗

𝑛+1 2⁄ = 0. 

 When the equations are linear, we can use Thomas’ 
algorithm to solve for a tri-diagonal system of linear 
equations. 

 Otherwise, we use an iterative scheme. 



Iterative Scheme 
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 1st step, initialization, 𝑘 = 0 
 Assume 𝜉𝑖,𝑗

𝑛+1 2⁄ 0 = 0. Solve for 𝑉𝑖𝑛+1 0 . 

 kth step 
 Using 𝑉𝑖𝑛+1 𝑘 − 1 , update 𝜉𝑖,𝑗

𝑛+1 2⁄ 𝑘 . 

 When 𝜉𝑖,𝑗
𝑛+1 2⁄ 𝑘 > 0, adjust the 𝐴𝑛 𝑘  and 𝑐𝑖𝑛 𝑘 . 

 Repeat until convergence. 



Adjustments (A) 
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 𝐴𝑛 𝑘 =
𝑎0,0 + 𝜉Δ𝑡

2
𝑎−1,1
⋮
0
0

0
𝑎0,1 + 𝜉Δ𝑡

2
⋱
…
…

0
𝑎1,1
⋱

𝑎−1,𝑀−1
0

…
…
⋱

𝑎0,𝑀−1 + 𝜉Δ𝑡
2

0

0
0
⋮

𝑎1,𝑀−1

𝑎0,𝑀 + 𝜉Δ𝑡
2

 



Adjustments (c) 
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 𝑐0𝑛 𝑘 =

1 + 𝜉Δ𝑡 𝑉1,0
𝑛+1 𝑘−1

2
+ 𝑉1,0

𝑛 −𝑉0,0
𝑛

2
− 𝑘𝑏

𝑐0,1
𝑛 + 𝜉Δ𝑡 𝑉1,1

𝑛+1 𝑘−1
2

+ 𝑉1,1
𝑛 −𝑉0,1

𝑛

2
− 𝑘𝑏

⋮

𝑐0,𝑀−1
𝑛 + 𝜉Δ𝑡 𝑉1,𝑀−1

𝑛+1 𝑘−1
2

+ 𝑉1,𝑀−1
𝑛 −𝑉0,𝑀−1

𝑛

2
− 𝑘𝑏

1 + 𝜉Δ𝑡 𝑉1,𝑀
𝑛+1 𝑘−1

2
+ 𝑉1,𝑀

𝑛 −𝑉0,𝑀
𝑛

2
− 𝑘𝑏

 

 𝑐1𝑛 𝑘 =

1 + 𝜉Δ𝑡 𝑉0,0
𝑛+1 𝑘−1

2
+ 𝑉0,0

𝑛 −𝑉1,0
𝑛

2
+ 𝑘𝑠

𝑐1,1
𝑛 + 𝜉Δ𝑡 𝑉0,1

𝑛+1 𝑘−1
2

+ 𝑉0,1
𝑛 −𝑉1,1

𝑛

2
+ 𝑘𝑠

⋮

𝑐1,𝑀−1
𝑛 + 𝜉Δ𝑡 𝑉0,𝑀−1

𝑛+1 𝑘−1
2

+ 𝑉0,𝑀−1
𝑛 −𝑉1,𝑀−1

𝑛

2
+ 𝑘𝑠

1 + 𝜉Δ𝑡 𝑉0,𝑀
𝑛+1 𝑘−1

2
+ 𝑉0,𝑀

𝑛 −𝑉1,𝑀
𝑛

2
+ 𝑘𝑠

 



Convergence 
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
𝑉𝑖
𝑛+1 𝑘

𝑉𝑖
𝑛+1 𝑘−1

− 1 < 𝜀 



Miscellaenous 

51 



Model Estimation 

52 

 Estimate the transition probabilities in the HMM by 
EM. 

 Estimate 𝜇 and 𝜎. 
 The log of the prices are Gaussian. 
 𝜎�2: sample variance 

 𝜎�2 = 𝜎2Δ𝑡 

 𝜎 = 𝜎� 1
Δ𝑡

 

 𝑚�𝑖: sample mean 

 𝑚�𝑖 = 𝜇𝑖 −
𝜎2

2
Δ𝑡 

 𝜇𝑖 = 1
Δ𝑡
𝑚�𝑖 + 𝜎2

2
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