

Introduction to Algorithmic Trading Strategies Lecture 3

Trend Following

Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com

References

- Introduction to Stochastic Calculus with Applications.
 Fima C Klebaner. 2nd Edition.
- Estimating continuous time transition matrices from discretely observed data. Inamura, Yasunari. April 2006.
- Optimal Trend Following Trading Rules. Dai, Min and Zhang, Qing and Zhu, Qiji Jim. 2011.

Stochastic Calculus

Brownian Motion

- Independence of increments.
 - dB = B(t) B(s) is independent of any history up to s.
- Normality of increments.
 - dB is normally distributed with mean 0 and variance t s.
- Continuity of paths.
 - ▶ *B*(*t*) is a continuous function of *t*.

Stochastic vs. Newtonian Calculus

- Newtonian calculus: when you zoom in a function enough, the little segment looks like a straight line, hence the approximation:
 - $dy = \dot{f}dt$
 - Derivative exists.
 - The function is differentiable.
- Stochastic calculus: no matter how much you zoom in or how small *dt* is, the function still looks very zig-zag and random. It is nothing like a straight line.
 - For Brownian motion, however much you zoom in, how small the segment is, it still just looks very much like a Brownian motion.
 - > The function is therefore no where differentiable.

Examples

not a trend

not mean reversion

dBdB

 $(dB)^2 = dBdB = dt$ • $\int_0^t (dB_t)^2 \approx \sum_{i=1}^n Z_{n,i}^2$ • $Z_{n,i}$ is of $N\left(0,\frac{t}{n}\right)$ for all *i*. • $\int_0^{\iota} (dB_t)^2 \approx \text{sum of variances of } Z_{n,i} \approx t$ • Making $n \to \infty$ or $dt \to 0$, we have • $\int_0^t (dB_t)^2 = t$, convergence in probability • $(dB_t)^2 = dt$, in differential form $\blacktriangleright dBdt = 0$

• dtdt = 0

Asset Price Model

- Want to model asset price movement.
- Change in price = *dS*
 - Change in price is not too meaningful as \$1 change in a penny stock is more significant than \$1 change in GOOG.
- Return = $\frac{dS}{S}$
- Model return using two parts.
 - Deterministic: µdt, the predictable part. E.g., fixed deposit interest rate.
 - Random/stochastic: σdB, where σ is the volatility of returns and dB is a sample from a probability distribution, e.g., Normal.

Geometric Brownian Motion

- Asset price: $\frac{dS}{S} = \mu dt + \sigma dB$
 - ► *dB*: normally distributed
 - $\blacktriangleright E(dB) = 0$
 - Variance = dt. It is intuitive that dB should be scaled by dt otherwise the (random) return drawn would be too big from any Normal distribution for dt → 0.
 - $dB = \phi \sqrt{dt}$, where ϕ is a standard Normal distribution.
- Reasonably good model for stocks and indices.
 - Real data have more big rises and falls than this model predicts, i.e., extreme events.

GBM Properties

- Markov property: the distribution of the next price
 S + dS depend only on the current price S.
- $\bullet E(dS) = E(\mu Sdt + \sigma SdB)$
 - $\mathbf{E} = \mathbf{E}(\mu S dt) + \mathbf{E}(\sigma S dB)$
 - $= \mu S dt + \sigma S E(dB)$
 - $\blacktriangleright = \mu S dt$
- Var $(dS) = E(dS^2) E(dS)^2 = \sigma^2 S^2 dt$
 - $\blacktriangleright \ dBdt = 0$
 - dtdt = 0
 - $\bullet \ dBdB = dt$

Stochastic Differential Equation

- Both μ and σ can be as simple as constants, deterministic functions of t and S, or as complicated as stochastic functions adapted to the filtration generated by {S_t}.
- $dS_t = \mu dt + \sigma dB_t$
- $dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dB_t$

Univariate Ito's Lemma

Assume

- $\blacktriangleright dX_t = \mu_t dt + \sigma_t dB_t$
- $f(t, X_t)$ is twice differentiable of two real variables

• We have

•
$$df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{\sigma_t^2}{2} \frac{\partial^2 f}{\partial x^2}\right) dt + \sigma_t \frac{\partial f}{\partial x} dB_t$$

"Proof"

- Taylor series
- df(t,X)
- $= f_t dt + f_X dX + \frac{1}{2} (f_{tt} dt dt + f_{tX} dt dX + f_{Xt} dX dt + f_{XX} dX dX)$
- $\bullet = f_t dt + f_X dX + \frac{1}{2} f_{XX} dX dX$
- $\bullet = f_t dt + f_X(\mu dt + \sigma dB) + \frac{1}{2}f_{XX}(\mu dt + \sigma dB)^2$
- $\bullet = f_t dt + f_X(\mu dt + \sigma dB) + \frac{1}{2}f_{XX}(\mu dt + \sigma dB)^2$
- = $f_t dt + f_X(\mu dt + \sigma dB) + \frac{1}{2}f_{XX}(\mu^2 dt^2 + \sigma^2 dB^2 + 2\mu dt\sigma dB)$
- $\bullet = f_t dt + f_X(\mu dt + \sigma dB) + \frac{1}{2}f_{XX}\sigma^2 dB^2$

$$\bullet = f_t dt + f_X(\mu dt + \sigma dB) + \frac{1}{2}f_{XX}\sigma^2 dt$$

$$\bullet = \left(f_t + \mu f_X + \frac{1}{2}\sigma^2 f_{XX}\right)dt + \sigma f_X dB$$

Log Example

- For G.B.M., $dX_t = \mu X_t dt + \sigma X_t dz_t$, $d \log X_t = ?$
- $f(x) = \log(x)$ $\frac{\partial f}{\partial t} = 0$ $\frac{\partial f}{\partial x} = \frac{1}{x}$ $\frac{\partial^2 f}{\partial x^2} = -\frac{1}{x^2}$ $d \log X_t = \left(\mu X_t \frac{1}{X_t} + \frac{(\sigma X_t)^2}{2} \left(-\frac{1}{X_t^2}\right)\right) dt + \sigma X_t \left(\frac{1}{X_t}\right) dB_t$ $\bullet = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$

Exp Example

• $dX_t = \mu dt + \sigma dz_t$, $de^{X_t} = ?$ • $f(x) = e^x$ $\frac{\partial f}{\partial t} = 0$ $\frac{\partial f}{\partial x} = e^x$ $\frac{\partial^2 f}{\partial x^2} = e^{x}$ • $de^{X_t} = \left(\mu e^{X_t} + \frac{\sigma^2}{2}e^{X_t}\right)dt + \sigma e^{X_t}dB_t$ $\bullet = e^{X_t} \left| \left(\mu + \frac{\sigma^2}{2} \right) dt + \sigma dB_t \right|$ $\frac{de^{X_t}}{e^{X_t}} = \left(\mu + \frac{\sigma^2}{2}\right)dt + \sigma dB_t$

Stopping Time

- A stopping time is a random time that some event is known to have occurred.
- Examples:
 - when a stock hits a target price
 - when you run out of money
 - when a moving average crossover occurs
- When a stock has bottomed out is NOT a stopping time because you cannot tell when it has reached its minimum without future information.

Optimal Trend Following Strategy

Asset Model

- Two state Markov model for a stock's prices: BULL and BEAR.
- $dS_r = S_r [\mu_{\alpha_r} dr + \sigma dB_r], t \le r \le T < \infty$

▶ The trading period is between time [*t*, *T*].

- α_r = {1,2} are the two Markov states that indicates the BULL and BEAR markets.
- $\mu_1 > 0$ $\mu_2 < 0$ $Q = \begin{bmatrix} -\lambda_1 & \lambda_1 \\ \lambda_2 & -\lambda_2 \end{bmatrix}$, the generator matrix for the Markov chain.

Generator Matrix

From transition matrix to generator matrix:

$$P(t,t + \Delta t) = I + \Delta tQ + o(\Delta t)$$

• We can estimate *Q* by estimating *P*.

$$P(t,s) = P(t,t + m\Delta t)$$

$$\approx (I + \Delta tQ)^{m} = \left(I + \frac{(s-t)}{m}Q\right)^{m} = \exp((s-t)Q)$$

$$P(t,t + \Delta t) = \exp(\Delta tQ)$$

$$\hat{P}(t) \approx \exp(\Delta t\hat{Q})$$

$$\hat{Q} \approx \frac{1}{\Delta t}\log\hat{P}(t)$$

$$E.g., \Delta t = \frac{1}{252}$$

Optimal Stopping Times

$$i = 0, \Lambda_0 = \{\tau_1, \nu_1, \tau_2, \nu_2, \cdots\}$$

$$i = 0, \Lambda_0 = \{\nu_1, \tau_2, \nu_2, \tau_3, \cdots\}$$

Parameters

- $\rho \ge 0$, interest free rate
- $S_t = S$, the initial stock price
- $i = \{0,1\}$, the net position
- ▶ *K_b*, the transaction cost for BUYs in percentage
- ▶ *K_s*, the transaction cost for SELLs in percentage

Expected Return (starting flat)

- When i = 0,
- $E_{0,t}(R_t) = E_t \left(e^{\rho(\tau_1 t)} \prod_{n=1}^{\infty} \frac{S_{\nu_n}}{S_{\tau_n}} \left[\frac{1 K_s}{1 + K_b} \right]^{I_{\{\tau_n < T\}}} e^{\rho(\tau_{n+1} \nu_n)} \right)$
 - You are long between \(\tau_n\) and \(\nu_n\) and the return is determined by the price change discounted by the commissions.
 - You are flat between v_n and τ_{n+1} and the money grows at the risk free rate.

Expected Return (starting long)

- When i = 1,
- $E_{1,t}(R_t) = E_t \left(\left[\frac{S_{\nu_1}}{S} e^{\rho(\tau_2 \nu_1)} (1 K_s) \right] \prod_{n=2}^{\infty} \frac{S_{\nu_n}}{S_{\tau_n}} \left[\frac{1 K_s}{1 + K_b} \right]^{I_{\{\tau_n < T\}}} e^{\rho(\tau_{n+1} \nu_n)} \right)$
 - You sell the long position at v_1 .

Value Functions

• It is easier to work with the log of the returns.

•
$$J_0(S, \alpha, t, \Lambda_0) = E_t \left(\rho(\tau_1 - t) + \sum_{n=1}^{\infty} \left\{ \log \frac{S_{\nu_n}}{S_{\tau_n}} + I_{\{\tau_n < T\}} \log \frac{1 - K_s}{1 + K_b} + \rho(\tau_{n+1} - \nu_n) \right\} \right)$$

•
$$J_1(S, \alpha, t, \Lambda_1) =$$

 $E_t \left(\left[\log \frac{S_{\nu_1}}{S} + \rho(\tau_2 - \nu_1) + \log(1 - K_S) \right] + \sum_{n=2}^{\infty} \left\{ \log \frac{S_{\nu_n}}{S_{\tau_n}} + I_{\{\tau_n < T\}} \log \frac{1 - K_S}{1 + K_b} + \rho(\tau_{n+1} - \nu_n) \right\} \right)$

Conditional Probability of Bull Market

- ► $p_r = P(\alpha_r = 1 \mid \sigma\{S_u : 0 \le u \le r\})$
- *p_r* is therefore a random process driven by the same Brownian motion that drives *S_u*.

•
$$dp_r = [-(\lambda_1 + \lambda_2)p_r + \lambda_2]dr + \frac{(\mu_1 - \mu_2)p_r(1 - p_r)}{\sigma}d\widehat{B_r}$$

• $d\widehat{B_r} = \frac{d\log(S_r) - [(\mu_1 - \mu_2)p_r + \mu_2 - \sigma^2/2]dr}{\sigma}$

$$p_{t+1} = p_t + g(p_t)\Delta t + \frac{(\mu_1 - \mu_2)p_t(1 - p_t)}{\sigma^2} \log\left(\frac{S_{t+1}}{S_t}\right)$$

- $g(p) = -(\lambda_1 + \lambda_2)p + \lambda_2 \frac{(\mu_1 \mu_2)p(1 p)[(\mu_1 \mu_2)p + \mu_2 \sigma^2/2]}{\sigma^2}$
- Make p_{t+1} between 0 and 1 if it falls outside the bounds.

Objective

- Find an optimal trading sequence (the stopping times) so that the value functions are maximized.
- $V_i(p,t) = \sup_{\Lambda_i} J_i(S, p, t, \Lambda_i)$
 - ► *V_i*: the maximum amount of expected returns

Realistic Expectation of Returns

Lower bounds:

- $\flat \ V_0(p,t) \ge \rho(T-t)$
- ► $V_1(p,t) \ge \rho(T-t) + \log(1-K_s)$
- Upper bound:

$$V_i(p,t) \le \left(\mu_1 - \frac{\sigma^2}{2}\right)(T-t)$$

- No trading zones:
 - One should never buy when $\rho \ge \mu_1 \frac{\sigma^2}{2}$

Principal of Optimality

 Given an optimal trading sequence, Λ_i, starting from time *t*, the truncated sequence will also be optimal for the same trading problem starting from any stopping times τ_n or v_n.

Coupled Value Functions

$$\begin{cases}
V_0(p,t) = \sup_{\tau_1} E_t \{ \rho(\tau_1 - t) - \log(1 + K_b) + V_1(p_{\tau_1}, \tau_1) \} \\
V_1(p,t) = \sup_{\nu_1} E_t \{ \log \frac{S_{\nu_1}}{S_t} + \log(1 - K_s) + V_0(p_{\nu_1}, \nu_1) \}
\end{cases}$$

Hamilton-Jacobi-Bellman Equations

$$\begin{cases} \min\{-\mathcal{L}V_{0} - \rho, V_{0} - V_{1} + \log(1 + K_{b})\} = 0\\ \min\{-\mathcal{L}V_{1} - f(\rho), V_{1} - V_{0} - \log(1 - K_{s})\} = 0\\ \end{cases}$$
with terminal conditions:
$$\begin{cases} V_{0}(p, T) = 0\\ V_{1}(p, T) = \log(1 - K_{s})\\ \\ V_{2}(p, T) = \log(1 - K_{s}) \end{cases}$$

$$\mathcal{L} = \partial_{t} + \frac{1}{2} \left(\frac{(\mu_{1} - \mu_{2})p(1 - p)}{\sigma}\right)^{2} \partial_{pp} + [-(\lambda_{1} + \lambda_{2})p + \lambda_{2}]\partial_{p}$$

Penalty Formulation Approach

The HJB formulation is equivalent to this system of PDEs.

$$\begin{cases} -\mathcal{L}V_0 - h(\rho) = \hat{\xi}(V_1 - V_0 - \log(1 + K_b))^+ \\ -\mathcal{L}V_1 - f(\rho) = \hat{\xi}(V_0 - V_1 + \log(1 - K_s))^+ \\ \hat{\xi} \text{ is a penalization factor such that } \hat{\xi} \to \infty. \end{cases}$$

$$h(\rho) = \rho$$

Trading Boundaries

BR = {*p* ∈ (0,1) × [0,*T*) : *p* ≥ $p_b^*(t)$ } *SR* = {*p* ∈ (0,1) × [0,*T*) : *p* ≤ $p_s^*(t)$ }

32

Trend following trading of SP500 1972–2011 compared with buy and hold

Trend following trading of SSE 2001–2011 compared with buy and hold

Problems

- > The buy entry signals are always delayed (as expected).
- The market therefore needs to bull long enough for the strategy to make profit.
- If the bear market comes in too fast and hard, the exit entry may not come in soon enough.
 - A proper stoploss from max drawdown may help.

Finding the Boundaries

- At any time t, we need to find p^{*}_b and p^{*}_s to determine whether we buy or sell or go flat.
- ▶ *p*^{*}_b is determined by
 - $V_1(p_b^*, t) V_0(p_b^*, t) = \log(1 + K_b)$
- ▶ *p*^{*}_s is determined by
 - $V_1(p_s^*, t) V_0(p_s^*, t) = \log(1 K_s)$
- Need to compute $V_0(p, t)$ and $V_1(p, t)$ for all p and t.
 - Solve the coupled PDEs.

Discretization of \mathcal{L}

•
$$(\rho, t) \in [0,1] \times [0,1)$$

• $(\rho, t) \text{ as } \{(\rho_j, t_n)\}$
• $j \in \{0, \dots, M\}$
• $\rho_0 = 0$
• $\rho_M = 0$
• $n \in \{1, \dots, N\}$
• $t_1 = 0$
• $t_N = 1^-$
• $\frac{\partial V_i}{\partial t} \approx \frac{V_{i,j}^{n+1} - V_{i,j}^n}{\Delta t}$

The Grid

$$\frac{\partial^2 V_i}{\partial \rho^2} \approx \frac{1}{2} \left(\frac{V_{i,j+1}^{n+1} - 2V_{i,j}^{n+1} + V_{i,j-1}^{n+1}}{(\Delta \rho)^2} + \frac{V_{i,j+1}^n - 2V_{i,j}^n + V_{i,j-1}^n}{(\Delta \rho)^2} \right)$$

RHS

$$\hat{\xi}(V_1 - V_0 - \log(1 + K_b))^+ = \\ \hat{\xi}_{0,j}^{n+1/2} \left(\frac{V_{1,j}^{n+1} - V_{0,j}^{n+1}}{2} + \frac{V_{1,j}^n - V_{0,j}^n}{2} - k_b \right) \\ k_b = \log(1 + K_b) \\ \hat{\xi}(V_0 - V_1 + \log(1 - K_s))^+ = \\ \hat{\xi}_{1,j}^{n+1/2} \left(\frac{V_{0,j}^{n+1} - V_{1,j}^{n+1}}{2} + \frac{V_{0,j}^n - V_{1,j}^n}{2} + k_s \right) \\ k_s = \log(1 - K_s)$$

Penalty

$$\hat{\xi}_{0,j}^{n+1/2} = \begin{cases} \xi \Delta t, & \text{if } \frac{V_{1,j}^{n+1} - V_{0,j}^{n+1}}{2} + \frac{V_{1,j}^{n} - V_{0,j}^{n}}{2} - k_{b} > 0\\ & 0, \text{ otherwise} \end{cases}$$

$$\hat{\xi}_{1,j}^{n+1/2} = \begin{cases} \xi \Delta t, & \text{if } \frac{V_{0,j}^{n+1} - V_{1,j}^{n+1}}{2} + \frac{V_{0,j}^{n} - V_{1,j}^{n}}{2} + k_{s} > 0\\ & 0, & \text{ otherwise} \end{cases}$$

The Discretized PDEs

$$a_{1,j}V_{0,j+1}^{n+1} + a_{0,j}V_{0,j}^{n+1} + a_{-1,j}V_{0,j-1}^{n+1} = c_{0,j}^{n} + \hat{\xi}_{0,j}^{n+1/2} \left(\frac{V_{1,j}^{n+1} - V_{0,j}^{n+1}}{2} + \frac{V_{1,j}^{n} - V_{0,j}^{n}}{2} - k_b \right)$$

$$a_{1,j}V_{1,j+1}^{n+1} + a_{0,j}V_{1,j}^{n+1} + a_{-1,j}V_{1,j-1}^{n+1} = c_{1,j}^{n} + \hat{\xi}_{1,j}^{n+1/2} \left(\frac{V_{0,j}^{n+1} - V_{1,j}^{n+1}}{2} + \frac{V_{0,j}^{n} - V_{1,j}^{n}}{2} + k_s \right)$$

$$j \in \{1, \dots, M-1\}$$

$$p = 0, p = 1 \text{ are excluded.}$$

The Coefficients

$$a_{-1,j} = -\frac{1}{2}\sigma_p^2 \frac{\Delta t}{2\Delta p^2} + \frac{1}{2}\mu_p \frac{\Delta t}{2\Delta p}$$

$$a_{0,j} = 1 + \sigma_p^2 \frac{\Delta t}{2\Delta p^2}$$

$$a_{1,j} = -\frac{1}{2}\sigma_p^2 \frac{\Delta t}{2\Delta p^2} - \frac{1}{2}\mu_p \frac{\Delta t}{2\Delta p}$$

$$c_{0,j}^n = -a_{1,j}V_{0,j+1}^n + (2 - a_{0,j})V_{0,j}^n - a_{-1,j}V_{0,j-1}^n + h(j\Delta p)\Delta t$$

• $c_{1,j}^n = -a_{1,j}V_{1,j+1}^n + (2 - a_{0,j})V_{1,j}^n - a_{-1,j}V_{1,j-1}^n + f(j\Delta p)\Delta t$

Boundary Conditions

▶ j = 0, p = 0 $a_{0,0}=1$ • $a_{1,0} = 0$ • $c_{0,0}^n = V_{0,1}^n + h(0)\Delta t$ • $c_{1,0}^n = V_{1,1}^n + f(0)\Delta t$ • j = M, p = 1 $a_{0,M}=1$ • $a_{-1,M} = 0$ • $c_{0.M}^n = V_{0.M-1}^n + h(1)\Delta t$ • $c_{1,M}^n = V_{1,M-1}^n + f(1)\Delta t$ ▶ $n = 0, t = 0, \text{ for all } j \in \{0, \dots, M\}$ $V_{0,i} = 0$ • $V_{1,i} = k_s$

System in Matrix Form

$$\begin{cases} A^{n}\vec{V}_{0}^{n+1} = \vec{c}_{0}^{n} \\ A^{n}\vec{V}_{1}^{n+1} = \vec{c}_{1}^{n} \end{cases}$$

$$A^{n} = \begin{bmatrix} a_{0,0} & 0 & 0 & \cdots & 0 \\ a_{-1,1} & a_{0,1} & a_{1,1} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & a_{-1,M-1} & a_{0,M-1} & a_{1,M-1} \\ 0 & \cdots & 0 & 0 & a_{0,M} \end{bmatrix}$$

Solving the System of Equations

- We already know the values of \vec{V}_0^0 and \vec{V}_1^0 .
- Starting from n = 0, using A^n , we iteratively solve for \vec{V}_0^{n+1} and \vec{V}_1^{n+1} until n = M 1.

> There are totally M systems of equations to solve.

- The equations are linear in the unknowns $V_{0,j}^{n+1}$ and $V_{1,j}^{n+1}$ if and only if $\hat{\xi}_{0,j}^{n+1/2} = 0$.
- When the equations are linear, we can use Thomas' algorithm to solve for a tri-diagonal system of linear equations.
- Otherwise, we use an iterative scheme.

Iterative Scheme

• 1^{st} step, initialization, k = 0

• Assume $\hat{\xi}_{i,j}^{n+1/2}(0) = 0$. Solve for $\vec{V}_i^{n+1}(0)$.

▶ kth step

- Using $\vec{V}_i^{n+1}(k-1)$, update $\hat{\xi}_{i,j}^{n+1/2}(k)$.
- When $\hat{\xi}_{i,j}^{n+1/2}(k) > 0$, adjust the $A^n(k)$ and $\vec{c}_i^n(k)$.
- Repeat until convergence.

Adjustments (A)

$$A^{n}(k) = \begin{bmatrix} a_{0,0} + \frac{\xi \Delta t}{2} & 0 & 0 & \cdots & 0 \\ a_{-1,1} & a_{0,1} + \frac{\xi \Delta t}{2} & a_{1,1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \cdots & a_{-1,M-1} & a_{0,M-1} + \frac{\xi \Delta t}{2} & a_{1,M-1} \\ 0 & 0 & 0 & 0 & a_{0,M} + \frac{\xi \Delta t}{2} \end{bmatrix}$$

$$\vec{c}_{0}^{n}(k) = \begin{bmatrix} 1 + \xi \Delta t \left(\frac{V_{1,0}^{n+1}(k-1)}{2} + \frac{V_{1,0}^{n} - V_{0,0}^{n}}{2} - k_{b} \right) \\ c_{0,1}^{n} + \xi \Delta t \left(\frac{V_{1,1}^{n+1}(k-1)}{2} + \frac{V_{1,1}^{n} - V_{0,1}^{n}}{2} - k_{b} \right) \\ \vdots \\ c_{0,M-1}^{n} + \xi \Delta t \left(\frac{V_{1,M-1}^{n+1}(k-1)}{2} + \frac{V_{1,M-1}^{n} - V_{0,M-1}^{n}}{2} - k_{b} \right) \\ 1 + \xi \Delta t \left(\frac{V_{1,M}^{n+1}(k-1)}{2} + \frac{V_{1,M}^{n} - V_{0,M}^{n}}{2} - k_{b} \right) \\ 1 + \xi \Delta t \left(\frac{V_{0,0}^{n+1}(k-1)}{2} + \frac{V_{0,0}^{n} - V_{1,0}^{n}}{2} + k_{s} \right) \\ c_{1,1}^{n} + \xi \Delta t \left(\frac{V_{0,M-1}^{n+1}(k-1)}{2} + \frac{V_{0,1}^{n} - V_{1,1}^{n}}{2} + k_{s} \right) \\ \vdots \\ c_{1,M-1}^{n} + \xi \Delta t \left(\frac{V_{0,M-1}^{n+1}(k-1)}{2} + \frac{V_{0,M-1}^{n} - V_{1,M-1}^{n}}{2} + k_{s} \right) \\ 1 + \xi \Delta t \left(\frac{V_{0,M-1}^{n+1}(k-1)}{2} + \frac{V_{0,M-1}^{n} - V_{1,M-1}^{n}}{2} + k_{s} \right) \end{bmatrix}$$

 $\left| \frac{\|V_i^{n+1}(k)\|}{\|V_i^{n+1}(k-1)\|} - 1 \right| < \varepsilon$

Miscellaenous

Model Estimation

- Estimate the transition probabilities in the HMM by EM.
- Estimate μ and σ .
 - > The log of the prices are Gaussian.
 - $\hat{\sigma}^2$: sample variance

$$\hat{\sigma}^2 = \sigma^2 \Delta t$$
$$\sigma = \hat{\sigma} \sqrt{\frac{1}{\Delta t}}$$

• \widehat{m}_i : sample mean

$$\widehat{m}_{i} = \left(\mu_{i} - \frac{\sigma^{2}}{2}\right) \Delta t$$
$$\widehat{\mu}_{i} = \frac{1}{\Delta t} \widehat{m}_{i} + \frac{\sigma^{2}}{2}$$