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Abstract

4

Quantitative trading is distinguishable from other trading methodologies like
technical analysis and analysts’ opinions because it uniquely provides justifications
to trading strategies using mathematical reasoning. Put differently, quantitative
trading is a science that trading strategies are proven statistically profitable or even
optimal under certain assumptions. There are properties about strategies that we
can deduce before betting the first $1, such as P&L distribution and risks. There are
exact explanations to the success and failure of strategies, such as choice of
Farameters. There are ways to iteratively improve strategies based on experiences of
ive trading, such as making more realistic assumptions. These are all made possible
only in quantitative trading because we have assumptions, models and rigorous
mathematical analysis.

Quantitative trading has proved itself to be a significant driver of mathematical
innovations, especially in the areas of stochastic analysis and PDE-theory. For
instances, we can compute the optimal timings to follow the market by solving a
pair of coupled Hamilton-Jacobi-Bellman equations; we can construct sparse mean
reverting baskets by solving semi-definite optimization problems with cardinality
constraints and can optimally trade these baskets by solving stochastic control
problems; we can identify statistical arbitrage opportunities by analyzing the
volatility process of a stochastic asset at different frequencies; we can compute the
optimal placements of market and limit orders by solving combined singular and
impulse control problems which leads to novel and difficult to solve quasi-
variational inequalities.
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What is Quantitative Trading?




Quantitative Trading?

» Quantitative trading is the buying and selling of assets
following the instructions computed from a set of
proven mathematical models.

» The differentiation from other trading methodologies
or the emphasis is on how a strategy is proven and
not on what strategy is created.

» It applies (rigorous) mathematical reasoning in all
steps during trading strategy construction from the
start to the end.



Moving Average Crossover as a TA

» A popular TA signal: Moving Average Crossover.

A crossover occurs when a faster moving average (i.e. a
shorter period moving average) crosses above/below a
slower moving average (i.e. a longer period moving

average); then you buy/sell.
» In most TA book, it is never proven only illustrated

with an example of applying the strategy to a stock for
a period of time to show profits. !



Technical Analysis is Not Quantitative Trading

» TA books merely describes the mechanics of strategies
but never prove them.

» Appealing to common sense is not a mathematical
proof.

» Conditional probabilities of outcomes are seldom
computed. (Lo, Mamaysky, & Wang, 2000)

» Application of TA is more of an art (is it?) than a
science.
How do you choose the parameters?
» For any TA rule, you almost surely can find an asset

and a period that the rule “works”, given the large
number of assets and many periods to choose from.



Fake Quantitative Models

<
<
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Data snooping
Misuse of mathematics
Assumptions cannot be quantified
No model validation against the current regime
Ad-hoc take profit and stop-loss

why 27
How do you know when a model is invalidated?
Cannot explain winning and losing trades
Cannot be analyzed (systematically)



The Quantitative Trading Research
Process




NM Quantitative Trading Research Process

1. Translate a vague trading intuition (hypothesis) into
a concrete mathematical model.

>.  Translate the mathematical symbols and equations
into a computer program.

3. Strategy evaluation.
4. Live execution for making money.
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Step 1 - Modeling

» Where does a trading idea come from?
Ex-colleagues
Hearsays
Newspapers, books
TV, e.g., Moving Average Crossover (MA)
» A quantitative trading strategy is a math function, f,
that at any given time, t, takes as inputs any

information that the strategy cares and that is
available, F,, and gives as output the position to take,

AGF,).
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Step 2 - Coding

» The computer code enables analysis of the strategy.
Most study of a strategy cannot be done analytically.
We must resort to simulation.

» The same piece of code used for research and

investigation should go straight into the production
for live trading.

Eliminate the possibility of research-to-IT translation
errors.
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Step 3 - Evaluation/Justification

» Compute the properties of a trading strategy.
» the P&L distribution
» the holding time distribution
» the stop-loss
» the maximal drawdown

» http://redmine.numericalmethod.com/projects/publi
c/repository/svn-
algoguant/show/core/src/main/java/com/numericalm
ethod/algoquant/execution/performance



http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/com/numericalmethod/algoquant/execution/performance
http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/com/numericalmethod/algoquant/execution/performance
http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/com/numericalmethod/algoquant/execution/performance
http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/com/numericalmethod/algoquant/execution/performance

Step 4 - Trading

» Put in capitals incrementally.
» Install safety measures.

» Monitor the performance.

» Regime change detection.
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Mathematical Analysis of Moving
Average Crossover




Moving Average Crossover as a Quantitative
Trading Strategy

» There are many mathematical justifications to Moving
Average Crossover.

weighted Sum of lags of a time series
Kuo, 2002
» Whether a strategy is quantitative or not depends not
on the strategy itself but
entirely on the process to construct it;
or, whether there is a scientific justification to prove it.
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Step 1 - Modeling

» Two moving averages: slower (n) and faster (m).
» Monitor the crossovers.

1 wn—
>Bt ( Z Pt ]) ( Z‘?=01Pt_j),n>m
» Long when B; = 0.
» Short when B; < 0.



How to Choose n and m?

» It is an art, not a science (so far).

» They should be related to the length of market cycles.
» Different assets have different n and m.

» Popular choices:



Two Simplifications

» Reduce the two dimensional problem to a one
dimensional problem.

Choose m = 1. We know that m should be small.

» Replace arithmetic averages with geometric averages.

This is so that we can work with log returns rather than
prices.
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GMA(n, 1)

» B, 2 0iff P, 2 ([T P )"

R, = — Z?;lz &_11) R._; (by taking log)

n
1

» B < 0iff P, < (/23 Pecj )"

R; < — 2?2—12 &11) R;_; (by taking log)

e J



What is n?




Acar Framework

» Acar (1993): to investigate the probability distribution
of realized returns from a trading rule, we need
the explicit specification of the trading rule
the underlying stochastic process for asset returns
the particular return concept involved



Knight-Satchell-Tran Intuition

» Stock returns staying going up (down) depends on
the realizations of positive (negative) shocks
the persistence of these shocks

» Shocks are modeled by
Asymmetry
Fat tails

» Persistence is modeled by a Markov switching process.


http://en.wikipedia.org/wiki/Gamma_distribution

Knight-Satchell-Tran Z;
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Knight-Satchell-Tran Process
» Ry =+ Zegg — (1 — Z) 6y

u;: long term mean of returns, e.g., o
&, 0;: positive and negative shocks, non-negative, i.i.d

— Alalxal_l —)llx
> fe(x) =~ T Ty e
A an ar—1
r f(x) = 2———eh¥

['(az)



Step 3 — Evaluation/Justification

» Assume the long term mean is o, y; = 0.

» Whenn = 2,
B:r=20)=(R;=20)=0Z=1)
B;<0)=(R:;<0)=(Z;=0)



GMA(2, 1) — Naive MA Trading Rule

» Buy when the asset return in the present period is
positive.

» Sell when the asset return in the present period is
negative.



Naive MA Conditions

» The expected value of the positive shocks to asset
return >> the expected value of negative shocks.

» The positive shocks persistency >> that of negative
shocks.



T Period Returns

» RRy = Y {-1 Ry X Ig,_, >0}

B; <0

0 1 T ¥

Sell at this time point



Holding Time Distribution

» P(N =T)

» =P(By < 0,Br_1 =0,...,B; =0,B, = 0)

» =P(Zr =0,Z7_4=1,..,7,=1,Zy = 1)

y =P(Zr =0,Z7_4=1,.., 7, =1|Zy = 1P(Zy = 1)

- Mp"™1(1-p), T=>1
1—1I, T=0

» Stationary state probability:

1—
M=—
2—-p—q




Conditional Returns Distribution (1)

» ®pppn=r(s) =E [e{i[g:l RtXI{Bt‘lzo}]S}W = T]

» = E _e{i-zz;l RtXI{Bt—120}]S}|BT < O, BT—l = 0, ...,BO = O]
y = E|eliBtzardshz. = 0,2,_, =1,..,7, = 1]

- E['e{i[el+---+eT_1—6T]s}]

_ {q’eT_l(S)CDa(—S); T >1
) =
(I)g(—S), T =0




Unconditional Returns Distribution (2)
» Dpp.(s) =

350 E |elZ redtineszalsliy = 7] pv = 1)
) =
Yo MpT (1 — p)®,. () Ps(—s) + (1 — M Ds(—s)

cI) —
= (1= MPs(=s) + (1~ p) ;72




Expected Returns
» E(RR7) = _iq)RRT,(O)

1
» =1 Ulpue — (1 —plus}

» When is the expected return positive?

1- .
Ue = H_;?,U5, shock impact

Us > Us, shock impact
[lp > 1—p,if u, = ugs, persistence



GMA(o0,1) Rule

1

» Py 2 (H?;ol Pt—j)n
» InP, > %Z}f‘z_ol InP,_;

4 lnPtZﬂl



GMA(e0,1) Expected Returns

» Dpp.(s) =
(1 -1Iq[Ps(s) + Ps(—s)] +
[1—p(1 —ID][®:(s) + P (—5)]

» E(RRr) = —[1 —p(1 = ID][ue + sl



MA Using the Whole History

» An investor will always expect to lose money using
GMA(c0,1)!

» An investor loses the least amount of money when the
return process is a random walk.



Optimal MA Parameters

» So, what are the optimal n and m?



Step 2: AR(1)

Rule returns %4
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Yearly Expected Rule Returns
AR(1) alpha=

0.1 without

drift
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Step 2 : ARMAC(1, 1)

Yearly Expected Rule Returns no systematic
Rule retumms % Price-trend model without drift winner
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Step 2 : ARIMA(o, d, o)

Yearly Expected Rule Returns
Fractional Gaussian H=0.6

Rule returns %%
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Live Results of Quantitative Trading
Strategies




Unique Guiding Principle
» What Others Do: » What We Do:

Start with simple assumptions

Start with a trading strategy.
5 8Y about the market.

Find the data that the Compute the optimal trading
strategy works. strategy given the

» Result: assumptions.
Paper P&L looks good. > Result:

Can mathematically prove
that no other strategy will

> Trading strategies are work better in the same
results of a non-scientific, market conditions.
a pure data snooping
process.

L/ &

Live P&L depends on luck.

» Trading strategies are results
of a scientific process.
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Optimal Trend Following (TREND)

»

We make assumptions that the market is a two (or
three) state model. The market state is either up,
down, (or sideway).

In each state, we assume a random walk with positive,
negative, or zero drift.

We use math to compute what the best thing to do is
in each of the states.

We estimate the conditional probability, p, of that the
market is going up given all the available information.

When p is big enough, i.e., most certainly that the
market is going up, we buy.

1
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0.95F o — 1
p, (t)
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Result:
2015/1/2 - 2016/5/2
Hang Seng china enterprises
index futures

trading period

assets traded

annualized

return 107.00%
max

drawdown 6.61%
Sharpe ratio 4.79



Optimal Trend Following (Math)

»  Two state Markov model for a stock’s prices: BULL and > Value function:
BEAR. ]0 (S' a,t, AO) =
p(Ty — t) +
ds, = Sr[,uardr + adBr], t<r<T<ow E,
. .. . ps {IOg + I, log——2 + p(t, vn)}
The trading period is between time [¢, T]. " <t} TS 14w, o
a, = {1,2} are the two Markov states that indicates J1 (S, at,Aq) =
the BULL and BEAR markets. [log_ +p(1z —v1) +log(1 — K )]
E¢
U1 >0 Yn=2 {IOg + 1{rn<T} 10g1 K, =+ p(Tpg1 — Un)}
U, <0 »  Find an optimal trading sequence (the stopping times) so that
the value functions are maximized.
» Q= I _2 l the generator matrix for the Markov Vilp, £) = supJi(S,p.t, Ay)
chain. V;: the maximum amount of expected returns
»  Wheni = 0, expected return is Vo(p,t) = Sup Efp(r; — ) —log(1 + Kp) + V4 (pr,, 1)}
— 14
Eo,c(Rr) = Vi(p,t) = sup E, {log +log(1 —K,) + Vo(Pvl;V1)}
T
E, (eP(T1 ) H 1SV71 [1 KS] s }ep(Tn+1_Un)>
=15, [1+Kp

»  Hamilton-Jacobi-Bellman Equations

{ min{—LVy — p,Vy — V; +log(1 + K,)} =0
min{—LV; — f(p), V1 — V5 —log(1 — Ks)} =0

We are long between t,, and v,, and the return is
determined by the price change discounted by the

commissions.
VO (p! T) =0

with terminal conditions:
{Vl (»,T) =log(1 — Ky)

We are flat between v,, and t,,;; and the money

grows at the risk free rate. (i)
L=0,+ (%) Bpp + [—(4 + )P + 2,19,

» Based on: M Dai, Q Zhang, QJ Zhu, "Trend following trading under a regime switching
model," SIAM Journal on Financial Mathematics, 2010.



Optimal Mean Reversion (MR)

» Basket construction problem:

Select the right financial instruments.
Obtain the optimal weights for the

selected financial instruments.

» Basket trading problem:

» Based on: Mudchanatongsuk, S., Primbs, ].A., Wong, " Optimal Pairs Trading: A
Stochastic Control Approach,” Dept. of Manage. Sci. & Eng., Stanford Univ., CA.
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Given the portfolio can be modelled
as a mean reverting OU process,
dynamic spread trading is a stochastic

20100001
symbols ARG
in

optimal control problem.

Given a fixed amount of capital,
dynamically allocate capital over a
risky mean reverting portfolio and a
risk-free asset over a finite time

horizon to maximize a general

constant relative risk aversion (CRRA)

utility function of the terminal
wealth .

Allocate capital amongst several

mean reverting portfolios.

2

£

portfolio

%

20408
L

Initial capital: 1,000,000
Final capital: 4,762,474
Annualized return: 37%

Sharpe ratio: 1.,

8
Max drawdown: 10% (2014/11/21)

Omega ratio: 1.4
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Optimal Mean Reversion (Math)

largest cluster in inverse covariance matrix
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covariance selection second largest cluster

maximize [r] 4I/J:TBz

subject to | Card(z) < k |

& ||—1. i

weights of stocks

the number of
stocks in the
portfolio is smaller

Semidefinite relaxation than k

maximize
subject to

Tr(AX)/Tr(BX)
Card(X) < k?

T X] =1

X =0, Rank(X) =1

»

Assume a risk free asset M, which satisfies
th - thdt
Assume two assets,A; and B;.

Assume B, follows a geometric Brownian
motion.

dBt- - 'uBtdt + O-BtdZt
x.is the spread between the two assets.

x¢ = logA; — log B;
ave htdAt+ht%+%
Vi Bt M

= {ht [k(@ —xp) + %nz + pna] + r} dt +
hmdw;
rr;latlx E[V:7], s.t.,

V(0) = vy, x(0) = xo

dx; = k(6 — x;)dt + ndw;

dVy = hydx; = hek(0 — x)dt + hyndw,

h(t)* = — £ (xp — 0) + 2a(t)x; + B(t)

(1 y) n




Intraday Volatility Trading (VOL)

» In mid or high frequency trading, or
within a medium or short time
interval, prices tend to oscillate.

» If there are enough oscillations
before prices move in a direction,
arbitrage exists.

loss region

profit region

Buy short /\ l
contract \\ v i ] EP
\\ \ Take profit
\ Take profit Establish)
N f 2
Buy short contract pesition.

Establish \ Take profit }
position / \ Buy Iong

contrac

\ Take profit \
Buy long

EP N contract '\

ake profit

Above Equilibrium point Below Equilibrium point
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140.00%
120.00%
100.00%
80.00%
60.00%
40.00%
20.00%
0.00% &y

-20.00%

Live Result:

trading period 2014/2/27 - 2015/2/27

Hang Seng china enterprises
assets traded index futures
annualized
return 122.32%
max
drawdown 10.24%
Sharpe ratio 18.45



Intraday Volatility Trading (Math)

4

For a continuous price process X;, we
define H-variation

Vr(H,X) = sup Y lX (@) — X (6=

It can be shown that for any H, there
exists a sequence (75, Ty)p=01,..n Such
that (t,,)5=¢,1,...n are Markovian and t,,

are defined by X, on intervals [t,,_1, T,].

And they satisfy the equality:
r Vr(H,X) = XX (13) = X (t7-0)]

N;(H, X) is the number of KAGI-
inversion in the T-interval.

H-volatility:
nr (H, X) =

For an no-arbitrage Wiener process, we
have

lim nr(H,oW) = KH = 2H

Vr(H,X)
Nt(H,X)

Define a trading strategy such that the
position of X is:

VE(H, X) =

SN sign (¥ (tnet) — X (Tho1)) Xz, 21 (0)

The trend following P&L is:

TX(H,X) = [ 75 (H,X)dX (w)
= (nr(H,X) —2H)N;y(H,X) + ¢

The expected income per trade is:

YX(H,X) = f; vl (H, X)dX (w)

Y& (H,X)
NE(H,x)

yK(H,X) =

Tlim EyX(H,X) =|K —2|H

Based on: SV Pastukhov, "On some probabilistic-statistical methods in technical
analysis,” Theory of Probability & Its Applications, SIAM, 2005.
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Optimal Market Making (MM)

»  We optimally place limit and market
orders depending on the current
inventory and spread.

the best market making strategy:

4

\ easee I“ .‘ e
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(a) near date 0 (b) near date T
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Live Result:

trading period 2015/7/16 - 2016/3/1
rebar + iron ore commodity

assets traded futures

annualized

return 65%

max

drawdown 0.90%

Sharpe ratio 16.71



Optimal Market Making (Math)

4

State variable: »  Quasi-Variational Inequality
(X,Y,P,S) min[—g—t—suqu'lv+yg,v—Mv]:O
cash, inventory, mid price, spread »  Terminal condition:

Objective: v(T,x,,p,5) = U(L(x,y,p.5))

» For each state i, we have

T
maxE [U(Xp) - [y g(¥)dt]
Yr =0, e.g., don’t hold position overnight

ov;
_a_i — Py — X7 1i; Oy (6%, y,0) — vi (6, x,y, )]

—sup 27 (q°)[vi(t,x — = (g, p)1°,y + 1°,p) — vi(t,x,y,p)]

U: utility function M| _ sup 28 (q) [vi(t x + 7 (g% p)I%y — 19,p) — vi(t,x,3,p)] | = ©
. : +v9,
Xp: terminal wealth 2t %,9,9) — SUp Tt x — ci(e ),y + )
y: penalty for holding inventory vi(Tox%,9,p) = U(L; Gy, p)
Liquidation function (how much we get by selling »  Assumptions:
everythlng): U(x) = x; we care about only how much money made.
L(x, v,D, s)=x— C(—y, p, s)=x+ yp — |y| % — & (P;)¢ is a martingale; we know nothing about where the market will move.
Equivalent problem (get rid of Y7 = 0): * Solution:
- vi(t,x,y,p) =x+yp + ¢:i(t,y)
mo?x E [U(L (XT: Yr, Pr, ST)) -V fo g(yt)dt] ¢;(t,y) is the solution to the system of integro-differential equations
. (IDE):
Value function: 20,
Srad ) i 1[5 (6,y) — ¢i(t, )]
(t,z,5) = E (U(LZr,5m) =y [ g(¥)d s 22(q) ity 4 17) — o 6 _ b
v(t,z,5) = supg B ST v ), 9(V)du sup 22 (q°) [i(6,y + 1) = (e, ) + (5 51qb:,,tb+)l |
\Z, : ar a a i5 all=
2= (oy,p) min| — sup 2¢(q) [i(t,y — 19) = $i(6,) + (3 — 61qa_pe-) 1] [ = O
+rg),

This is a mixed regular/impulse control problem in a

i5
regime switching jump-ditfusion model. i) = sup |y +e) =5 lel —e]

$i(T,y) = —lyl5 -«
Based on: F Guilbaud, H Pham, "Optimal high-frequency trading with limit and market
orders," Quantitative Finance, 2013.
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Conclusions




FinMath Infrastructure Support

» All these mathematics and simulations are possible only with a
finmath technology that serves as the modeling infrastructure.

* Trading Signals * Asset Allocation * Risk Management
Applications P e
o 1 ]
o 4
4 '
. . + Optimal Trading Strategies + Portfolio Optimization + Extreme Value Theory
Financial ST o ;

Mathematics b -l T
. 4
4 '

A dvan ce d * Cointegration * Time Series Analysis ’ g)(lg)]t;,nég%t,l(s)ggg,lgp’ * Digital Signal Processing
. GA) T g

Mathematics v\ ’
. 4
4 '

Foundation * Linear algebra - Calculus * Unconstrained -« Statistics * Differential - Parallelization
1 f £ optimization Equations
Mathematics v a
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The Essential Skills

» Financial intuitions, market understanding, creativity.
» Mathematics.

» Computer programming.
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An Emerging Field

» Itisa financial industry where mathematics and
computer science meet.

» Itisan arms race to build

more reliable and faster execution platforms (computer
science);

more comprehensive and accurate prediction models
(mathematics).
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