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Notations 
 𝑟 = 𝑟1, … , 𝑟𝑛 ′ : a random vector of returns, either for a 

single asset over 𝑛 periods, or a basket of 𝑛 assets 
 𝑄 : the covariance matrix of the returns 
 𝑥 = 𝑥1, … , 𝑥𝑛 ′: the weightings given to each holding 

period, or to each asset in the basket 
 



Portfolio Statistics 
 Mean of portfolio 
 𝜇 𝑥 = 𝑥′𝐸 𝑟  

 Variance of portfolio 
 𝜎2 𝑥 = 𝑥′𝑄𝑄 



Sharpe Ratio 

 sr 𝑥 = 𝜇 𝑥 −𝑟𝑓
𝜎2 𝑥

= 𝑥′𝐸 𝑟 −𝑟𝑓
𝑥′𝑄𝑄

 

 𝑟𝑓: a benchmark return, e.g., risk-free rate 
 In general, we prefer 
 a bigger excess return 
 a smaller risk (uncertainty) 
 



Sharpe Ratio Limitations 
 Sharpe ratio does not differentiate between winning 

and losing trades, essentially ignoring their likelihoods 
(odds). 

 Sharpe ratio does not consider, essentially ignoring, all 
higher moments of a return distribution except the 
first two, the mean and variance. 



Sharpe’s Choice 
 Both A and B have the same mean. 
 A has a smaller variance. 
 Sharpe will always chooses a portfolio of the smallest 

variance among all those having the same mean. 
 Hence A is preferred to B by Sharpe. 



Avoid Downsides and Upsides 
 Sharpe chooses the smallest variance portfolio to 

reduce the chance of having extreme losses. 
 Yet, for a Normally distributed return, the extreme 

gains are as likely as the extreme losses. 
 Ignoring the downsides will inevitably ignore the 

potential for upsides as well. 



Potential for Gains 
 Suppose we rank A and B by their potential for gains, 

we would choose B over A. 
 Shall we choose the portfolio with the biggest variance 

then? 
 It is very counter intuitive. 



Example 1: A or B? 



Example 1: L = 3 
 Suppose the loss threshold is 3. 
 Pictorially, we see that B has more mass to the right of 

3 than that of A. 
 B: 43% of mass; A: 37%. 

 We compare the likelihood of winning to losing. 
 B: 0.77; A: 0.59. 

 We therefore prefer B to A. 



Example 1: L = 1 
 Suppose the loss threshold is 1. 
 A has more mass to the right of L than that of B. 
 We compare the likelihood of winning to losing. 
 A: 1.71; B: 1.31. 

 We therefore prefer A to B. 



Example 2 



Example 2: Winning Ratio 
 It is evident from the example(s) that, when choosing 

a portfolio, the likelihoods/odds/chances/potentials 
for upside and downside are important. 

 Winning ratio 𝑊𝐴
𝑊𝐵

: 

 2𝜎 gain: 1.8 
 3𝜎 gain: 0.85 
 4𝜎 gain: 35 



Example 2: Losing Ratio 

 Losing ratio 𝐿𝐴
𝐿𝐵

: 

 1𝜎 loss: 1.4 
 2𝜎 loss: 0.7 
 3𝜎 loss : 80 
 4𝜎 loss : 100,000!!! 



Higher Moments Are Important 
 Both large gains and losses in example 2 are produced 

by moments of order 5 and higher. 
 They even shadow the effects of skew and kurtosis. 
 Example 2 has the same mean and variance for both 

distributions. 
 Because Sharpe Ratio ignores all moments from order 

3 and bigger, it treats all these very different 
distributions the same. 



How Many Moments Are Needed? 



Distribution A 
 Combining 3 Normal distributions 
 N(-5, 0.5) 
 N(0, 6.5) 
 N(5, 0.5) 

 Weights: 
 25% 
 50% 
 25% 



Moments of A 
 Same mean and variance as distribution B. 
 Symmetric distribution implies all odd moments (3rd, 

5th, etc.) are 0. 
 Kurtosis = 2.65 (smaller than the 3 of Normal) 
 Does smaller Kurtosis imply smaller risk? 

 6th moment: 0.2% different from Normal 
 8th moment: 24% different from Normal 
 10th moment: 55% bigger than Normal 



Performance Measure Requirements 
 Take into account the odds of winning and losing. 
 Take into account the sizes of winning and losing. 
 Take into account of (all) the moments of a return 

distribution. 



Loss Threshold 
 Clearly, the definition, hence likelihoods, of winning 

and losing depends on how we define loss. 
 Suppose L = Loss Threshold, 
 for return < L, we consider it a loss 
 for return > L, we consider it a gain 



An Attempt 
 To account for 
 the odds of wining and losing 
 the sizes of wining and losing 

 We consider 

 Ω = 𝐸 𝑟|𝑟>𝐿 ×𝑃 𝑟>𝐿
𝐸 𝑟|𝑟≤𝐿 ×𝑃 𝑟≤𝐿

 

 Ω = 𝐸 𝑟|𝑟>𝐿 1−𝐹 𝐿
𝐸 𝑟|𝑟≤𝐿 𝐹 𝐿

 



First Attempt 



First Attempt Inadequacy 
 Why F(L)? 
 Not using the information from the entire 

distribution. 
 hence ignoring higher moments 



Another Attempt 



Yet Another Attempt 

A 

B C 

D 



Omega Definition 
 Ω takes the concept to the limit. 
 Ω uses the whole distribution. 
 Ω definition: 
 Ω = 𝐴𝐴𝐴

𝐴𝐴𝐴
 

 Ω = ∫ 1−𝐹 𝑟 𝑑𝑑𝑏=max 𝑟
𝐿

∫ 𝐹 𝑟 𝑑𝑑𝐿
𝑎=min 𝑟

 



Intuitions 
 Omega is a ratio of winning size weighted by 

probabilities to losing size weighted by probabilities. 
 Omega considers size and odds of winning and losing 

trades. 
 Omega considers all moments because the definition 

incorporates the whole distribution. 



Omega Advantages 
 There is no parameter (estimation). 
 There is no need to estimate (higher) moments. 
 Work with all kinds of distributions. 
 Use a function (of Loss Threshold) to measure 

performance rather than a single number (as in Sharpe 
Ratio). 

 It is as smooth as the return distribution. 
 It is monotonic decreasing. 



Omega Example 



Affine Invariant 
 𝜑: 𝑟 → 𝐴𝐴 + 𝐵, iff Ω� 𝜑 𝐿 = Ω 𝐿  
 𝐿 → 𝐴𝐿 + 𝐵 
 We may transform the returns distribution using any 

invertible transformation before calculating the 
Gamma measure. 

 The transformation can be thought of as some sort of 
utility function, modifying the mean, variance, higher 
moments, and the distribution in general. 



Numerator Integral (1) 

 ∫ 𝑑 𝑥 1 − 𝐹 𝑥𝑏
𝐿  

 = 𝑥 1 − 𝐹 𝑥 𝑏
𝐿 

 = 𝑏 1 − 𝐹 𝑏 − 𝐿 1 − 𝐹 𝐿  

 = −𝐿 1 − 𝐹 𝐿  



Numerator Integral (2) 

 ∫ 𝑑 𝑥 1 − 𝐹 𝑥𝑏
𝐿  

 = ∫ 1 − 𝐹 𝑥 𝑑𝑥𝑏
𝐿 + ∫ 𝑥𝑑 1 − 𝐹 𝑥𝑏

𝐿  

 = ∫ 1 − 𝐹 𝑥 𝑑𝑑𝑏
𝐿 − ∫ 𝑥𝑥𝑥 𝑥𝑏

𝐿  



Numerator Integral (3) 

 −𝐿 1 − 𝐹 𝐿 = ∫ 1 − 𝐹 𝑥 𝑑𝑑𝑏
𝐿 − ∫ 𝑥𝑥𝑥 𝑥𝑏

𝐿  

 ∫ 1 − 𝐹 𝑥 𝑑𝑑𝑏
𝐿 = −𝐿 1 − 𝐹 𝐿 + ∫ 𝑥𝑥𝑥 𝑥𝑏

𝐿  

 = ∫ 𝑥 − 𝐿 𝑓 𝑥 𝑑𝑑𝑏
𝐿  

 = ∫ max 𝑥 − 𝐿, 0 𝑓 𝑥 𝑑𝑑𝑏
𝑎  

 = 𝐸 max 𝑥 − 𝐿, 0  

undiscounted call option price 



Denominator Integral (1) 

 ∫ 𝑑 𝑥𝐹 𝑥𝐿
𝑎  

 = 𝑥𝑥 𝑥 𝐿
𝑎 

 = 𝐿𝐹 𝐿 − 𝑎 𝐹 𝑎  
 = 𝐿𝐹 𝐿  



Denominator Integral (2) 

 ∫ 𝑑 𝑥𝐹 𝑥𝐿
𝑎  

 = ∫ 𝐹 𝑥 𝑑𝑥𝐿
𝑎 + ∫ 𝑥𝑑𝑑 𝑥𝐿

𝑎  



Denominator Integral (3) 

 𝐿𝐿 𝐿 = ∫ 𝐹 𝑥 𝑑𝑑𝐿
𝑎 + ∫ 𝑥𝑥𝑥 𝑥𝐿

𝑎  

 ∫ 𝐹 𝑥 𝑑𝑑𝐿
𝑎 = 𝐿𝐿 𝐿 − ∫ 𝑥𝑥𝑥 𝑥𝐿

𝑎  

 = ∫ 𝐿 − 𝑥 𝑓 𝑥 𝑑𝑥𝐿
𝑎  

 = ∫ max 𝐿 − 𝑥, 0 𝑓 𝑥 𝑑𝑑𝑏
𝑎  

 = 𝐸 max 𝐿 − 𝑥, 0  
 undiscounted put option price 



Another Look at Omega 

 Ω = ∫ 1−𝐹 𝑟 𝑑𝑑𝑏=max 𝑟
𝐿

∫ 𝐹 𝑟 𝑑𝑑𝐿
𝑎=min 𝑟

 

 = 𝐸 max 𝑥−𝐿,0
𝐸 max 𝐿−𝑥,0

 

 = 𝑒−𝑟𝑓𝐸 max 𝑥−𝐿,0
𝑒−𝑟𝑓𝐸 max 𝐿−𝑥,0

 

 = 𝐶 𝐿
𝑃 𝐿

 

 



Options Intuition 
 Numerator: the cost of acquiring the return above 𝐿 
 Denominator: the cost of protecting the return below 
𝐿 

 Risk measure: the put option price as the cost of 
protection is a much more general measure than 
variance 



Can We Do Better? 
 Excess return in Sharpe Ratio is more intuitive than 
𝐶 𝐿  in Omega. 

 Put options price as a risk measure in Omega is better 
than variance in Sharpe Ratio. 



Sharpe-Omega 

 Ω𝑆 = 𝑟̅−𝐿
𝑃 𝐿

 

 In this definition, we combine the advantages in both 
Sharpe Ratio and Omega. 
 meaning of excess return is clear 
 risk is bettered measured 

 Sharpe-Omega is more intuitive. 
 𝛺𝑆 ranks the portfolios in exactly the same way as 𝛺. 



Sharpe-Omega and Moments 
 It is important to note that the numerator relates only 

to the first moment (the mean) of the returns 
distribution. 

 It is the denominator that take into account the 
variance and all the higher moments, hence the whole 
distribution. 



Sharpe-Omega and Variance 
 Suppose 𝑟̅ > 𝐿. Ω𝑆 > 0. 
 The bigger the volatility, the higher the put price, the bigger 

the risk, the smaller the Ω𝑆, the less attractive the 
investment. 

 We want smaller volatility to be more certain about the 
gains. 

 Suppose 𝑟̅ < 𝐿. Ω𝑆 < 0. 
 The bigger the volatility, the higher the put price, the bigger 

the Ω𝑆, the more attractive the investment. 
 Bigger volatility increases the odd of earning a return above 
𝐿. 



Portfolio Optimization 
 In general, a Sharpe optimized portfolio is different 

from an Omega optimized portfolio. 



Optimizing for Omega 



max
𝑥

Ω𝑆 𝑥

∑ 𝑥𝑖𝐸 𝑟𝑖𝑛
𝑖 ≥ 𝜌
∑ 𝑥𝑖𝑛
𝑖 = 1

𝑥𝑖𝑙 ≤ 𝑥𝑖 ≤ 1

 

 Minimum holding: 𝑥𝑙 = 𝑥1𝑙 , … , 𝑥𝑛𝑙
′
 



Optimization Methods 
 Nonlinear Programming 
 Penalty Method 

 Global Optimization 
 Tabu search (Glover 2005) 
 Threshold Accepting algorithm (Avouyi-Dovi et al.) 
 MCS algorithm (Huyer and Neumaier 1999) 
 Simulated Annealing 
 Genetic Algorithm 

 Integer Programming (Mausser et al.) 



3 Assets Example 
 𝑥1 + 𝑥2+ 𝑥3 = 1 
 𝑅𝑖 = 𝑥1𝑟1𝑖 + 𝑥2𝑟2𝑖 + 𝑥3𝑟3𝑖 
 = 𝑥1𝑟1𝑖 + 𝑥2𝑟2𝑖 + 1 − 𝑥1 − 𝑥2 𝑟3𝑖 

 



Penalty Method 
 𝐹 𝑥1, 𝑥2 =
− Ω 𝑅𝑖 +
𝜌 min 0, 𝑥1 2 + min 0, 𝑥2 2 + min 0,1 − 𝑥1 − 𝑥2 2  

 Can apply Nelder-Mead, a Simplex algorithm that 
takes initial guesses. 

 𝐹 needs not be differentiable. 
 Can do random-restart to search for global optimum. 



Threshold Accepting Algorithm 
 It is a local search algorithm. 
 It explores the potential candidates around the current best 

solution. 
 It “escapes” the local minimum by allowing choosing a 

lower than current best solution. 
 This is in very sharp contrast to a hilling climbing 

algorithm. 



Objective 
 Objective function 
 ℎ:𝑋 → 𝑅,𝑋 ∈ 𝑅𝑛 

 Optimum 
 ℎopt = max

𝑥∈𝑋
ℎ 𝑥  



Initialization 
 Initialize 𝑛 (number of iterations) and 𝑠𝑠𝑠𝑠. 
 Initialize sequence of thresholds 𝑡𝑡𝑘, 𝑘 = 1, … , 𝑠𝑠𝑠𝑠 
 Starting point: 𝑥0 ∈ 𝑋 



Thresholds 
 Simulate a set of portfolios. 
 Compute the distances between the portfolios. 
 Order the distances from smallest to biggest. 
 Choose the first 𝑠𝑠𝑠𝑠 number of them as thresholds. 



Search 
 𝑥𝑖+1 ∈ 𝑁𝑥𝑖  (neighbour of 𝑥𝑖) 
 Threshold: ∆ℎ = ℎ 𝑥𝑖+1 − ℎ 𝑥𝑖  
 Accepting: If ∆ℎ > −𝑡𝑡𝑘 set 𝑥𝑖+1 = 𝑥𝑖  
 Continue until we finish the last (smallest) threshold. 
 ℎ 𝑥𝑖 ≈ ℎ𝑜𝑜𝑜 

 Evaluating ℎ by Monte Carlo simulation. 
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